Dov Bahat

Tectonofractography

With 197 Figures in 299 Parts

Springer-Verlag Berlin Heidelberg New York London Paris Tokyo Hong Kong Barcelona Budapest

Contents action of rectangements and reserved to lot Call 2.19

Cha	apter 1 Introduction to Fracture	1
1.1	Basic Concepts of Elastic Fracture	1
	1.1.1 The Stress Concentration Factor	1
	1.1.2 The Griffith Energy-Balance Concept	3
	1.1.3 Obreimoff's Experiment	7
	1.1.4 Fracture Mechanics	9
	1.1.5 The Maximum $\sigma_{\theta\theta}$ Criterion	14
	1.1.6 Fracture in Compression	16
	1.1.7 Experimental	17
1.2	Plastic Zones Ahead of the Crack	22
	1.2.1 Introduction	22
	1.2.2 Various Manifestations of the Plastic Zone	22
	1.2.3 The Size of the Plastic Zone in Silicate Glasses	25
	1.2.4 Plane Strain and Plane Stress	26
	1.2.5 Secondary Cracks in the Plastic Zone	29
	1.2.6 The Damage Zone	30
1.3	Atomistic Concepts of the Crack Tip	31
	1.3.1 Thomson's Three Prototypes	31
	1.3.2 The LRT Atomistic Surface Force Model	33
	1.3.3 The Dissociative Chemisorption Model	34
1.4	Kinetic Processes in Fracture	36
	1.4.1 Subcritical Crack Growth	36
	1.4.2 Failure Prediction	44
	1.4.3 Supercritical Crack Velocities	46
	1.4.4 Fracture Branching	49
1.5	Microstructural Aspects of Fracture in Polycrystalline	51
	(Grainy) Materials	51
	1.5.1 General	21
	1.5.2 Dependence of Mechanical Properties on	52
	Microstructure	
	1.5.3 Crack Shielding	53 54
	1.5.4 Fracture in Concrete	54
	1.5.5 Limitations and Deviations from Simple	56
	Microstructure-Strength Relationship	57
1.0	Fracture in Rocks	21

 1.6.1 Joint Initiation Stage
 58

1.6.2 Joint Propagation 1.6.3 Joint Arrest	59 61
Chapter 2 Fractography in Technical Materials	63
2.1 Fracture Surface Morphology – Basic Geometry	63
2.1.1 Introduction	63
2.1.2 Fracture Categories	67
2.1.3 The Quantitative Mirror Plane 2.1.4 Crack Branching	101
2.2 Terminology	111 118
2.3 Applied Fractography	119
2.3.1 Fractography as a Tool of Fracture Diagnosis in	119
Glass Bottles	120
2.3.2 The Fractography of Metal Failures	132
2.3.3 Fractography in Polymethylmethacrylate	135
Chapter 3 Rock Fractography	139
3.1 Fracture Markings on Joint Surfaces	139
3.1.1 Early Studies	139
3.1.2 Plumes and Related Structures	142
3.1.3 Rib Markings	159
3.1.4 Combined Markings of Plumes and Ribs	166
3.1.5 Affinities of Specific Joint Markings to Certain	
Joint Directions	167
3.1.6 The Fringe	170
3.1.7 Discoid Radial and Ring Joints	183
3.1.8 Fracture Mechanisms	189
3.1.9 Fracture Markings in Thermally Deformed Rocks	10.5
and in Granite	195
3.2 Induced Fracturing in Rocks	202
3.2.1 Controlled Laboratory Conditions 3.2.2 Fractography Induced by Coring	202 205
3.2.3 Markings Induced by Quarryin	203
5.2.5 Markings induced by Quarryin	209
Chapter 4 Characterization and Classification of Fracture	
Surface Morphology in Geologic Formations	211
4.1 Qualitative Characterization of Fracture Surface	
Markings	
4.1.1 Descriptive Parameters of Fracture Surface	211
Markings	211
4.2 Quantitative Characterization of Fracture Surface	
Markings	
4.2.1 Measureable Parameters of Fracture Surface	
Markings	223
4.3 Classification of Fracture Surface Markings	237

Chapter 5 Tectonofractography	239
5.1 Application of Joint Surface Morphology in Tectonics	239
5.1.1 Assumptions	239
5.1.2 Problems Involved in the Transition from Material	5:9
Science to Tectonophysics	240
5.2 Burial Jointing	240
5.2.1 Early Burial Joints in Lower Eocene Chalks Near	210
Beer Sheva	241
5.2.2 Jointing in Middle Eocene Chalks South of Beer	
Sheva	245
5.2.3 Burial Joints and Syntectonic Joints in the	
Appalachian Plateau, U.S.A.	248
5.2.4 Common Features of Burial Joints	255
5.3 Syntectonic Jointing	258
5.3.1 Syntectonic Jointing in Santonian Chalks, Israel	259
5.3.2 Upper Cretaceous Chalks in East France	265
5.3.3 Upper Cretaceous Chalks in South England	267
5.3.4 Upper Palaeozoic Fractures in Shales of the	
Appalachian Plateau, New York	274
5.3.5 Jointing in the Entrada Sandstone, Utah	274
5.3.6 Syntectonic Jointing in Association with Fault	
Termination	275
5.3.7 Syntectonic Joints Related to Unfolding	277
5.3.8 Syntectonic Discoidal Fracturing in Flint Clays	279
5.3.9 Characteristic Features of Syntectonic Joints	279
5.4 Uplift Jointing	282
5.4.1 Burial Joints and Uplift Joints in Lower Eocene	
Chalks Around Beer Sheva	282
5.4.2 Uplift Joints in Middle Eocene Chalks and	
Limestones from the Northern Negev (Southern	
Israel)	285
5.4.3 Unloading and Release Joints from the	
Appalachian Plateau, U.S.A.	287
5.4.4 Sequential Formation of Uplift Joints	290
5.4.5 Vertical Propagation of Uplift Joints	292
5.4.6 Orthogonal Joint Sets	297
5.4.7 Fracture Markings on Horizontal Surfaces	297
5.4.8 Common Features of Uplift Joints	298
5.5 Post Uplift Jointing	301
	501
Tectonic Phases: a Summary	302
5.6.1 Spatial Characters of the Joint Plane	302
5.6.2 Fracture Surface Markings	310
5.7 Propagation, Opening, Mineralization and Joint	510
Intensity of the Various Joint Types	
intensity of the various sound types	515

	5.7.1 Propagation, Opening and Mineralization	313
		316
5.8	Approximate Maximum Depths at Which Various Joint	
	Types Develop	316
5.9	Fracture Interaction	317
	5.9.1 Extents of Joint Interaction	318
	5.9.2 Conditions of Joint Interaction	320
	5.9.3 Interaction Mechanisms of Experimental Cracks	
		322
	5.9.4 Extensional Branching of Faults	323
	erences	
Ref	erences	325
Sub	ject Index	341
	Syntectenic Jointing and the second of the second second Jointing in Santonian Change, Israel	