Contents

1 Elements of basic theory of anisotropic wave propagation
1.1 Governing equations and plane-wave properties
 1.1.1 Wave equation and Hooke’s law
 1.1.2 Christoffel equation and properties of plane waves
 1.1.3 Group (ray) velocity
 1.1.4 Anisotropic symmetry systems
1.2 Plane waves in transversely isotropic media
 1.2.1 Solutions of the Christoffel equation
 1.2.2 Thomsen notation for transverse isotropy
 1.2.3 Exact and approximate phase and group velocity
 1.2.4 Polarization vector and relationship between phase, group and polarization directions
1.3 Plane waves in orthorhombic media
 1.3.1 Limited equivalence between TI and orthorhombic media
 1.3.2 Anisotropic parameters for orthorhombic media
 1.3.3 Signatures in the symmetry planes
 1.3.4 P-wave velocity outside the symmetry planes
 1.3.5 Discussion

Appendices for Chapter 1
1A Phase velocity in arbitrary anisotropic media
1B Group-velocity vector as a function of phase velocity

2 Influence of anisotropy on point-source radiation and AVO analysis
2.1 Point-source radiation in anisotropic media
 2.1.1 Green’s function in homogeneous anisotropic media
 2.1.2 Numerical analysis of point-source radiation
 2.1.3 Discussion
2.2 Radiation patterns and AVO analysis in VTI media
 2.2.1 Radiation patterns for weak transverse isotropy
 2.2.2 P-wave radiation pattern
 2.2.3 P-wave reflection coefficient in VTI media
 2.2.4 AVO signature of shear waves
 2.2.5 Discussion

Appendices for Chapter 2
2A Derivation of the anisotropic Green’s function
2B Weak-anisotropy approximation for radiation patterns in TI media
3 Normal-moveout velocity in layered anisotropic media

3.1 2-D NMO equation in an anisotropic layer

3.1.1 General expression for dipping reflectors

3.1.2 Special cases

3.2 NMO velocity for vertical transverse isotropy

3.2.1 Horizontal reflector

3.2.2 Elliptical anisotropy

3.2.3 Weak-anisotropy approximation for general VTI media

3.2.4 Dip-dependent NMO velocity of P-waves

3.3 NMO velocity for tilted TI media

3.3.1 Absence of reflections from steep interfaces

3.3.2 Dip-dependent P-wave NMO velocity

3.4 NMO velocity in layered media and time-to-depth conversion

3.4.1 2-D Dix-type NMO equation for dipping reflectors

3.4.2 Horizontally layered media and time-to-depth conversion

3.5 Elements of 3-D analysis of NMO velocity

3.5.1 Equation of the NMO ellipse

3.5.2 NMO ellipse in VTI media

3.5.3 NMO ellipse in orthorhombic and HTI media

Appendices for Chapter 3

3A 2-D NMO equation in an anisotropic layer

3B Weak-anisotropy approximation for P-wave NMO velocity in TTI media

3C 2-D Dix-type equation in layered anisotropic media

3D 3-D NMO equation in heterogeneous anisotropic media

4 Nonhyperbolic reflection moveout

4.1 Quartic moveout coefficient

4.1.1 General 2-D equation for a single layer

4.1.2 Explicit expressions for VTI media

4.1.3 Layered media

4.2 Nonhyperbolic moveout equation

4.2.1 Weak-anisotropy approximations

4.2.2 General long-spread moveout equation

4.3 P-wave moveout in VTI media in terms of the parameter \(\eta \)

4.3.1 Single layer

4.3.2 Layered media

4.4 Long-spread moveout of SV-waves in VTI media

4.4.1 Models with negative \(\sigma \)

4.4.2 Positive \(\sigma \) and models with cusps

Appendices for Chapter 4

4A Weak-anisotropy approximation for long-spread moveout

4B P-wave moveout in layered VTI media
5 Reflection moveout of mode-converted waves

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1 Dip-dependent moveout of PS-waves in a single layer (2-D)</td>
<td>200</td>
</tr>
<tr>
<td>5.1.1 Parametric representation of PS traveltime</td>
<td>201</td>
</tr>
<tr>
<td>5.1.2 Attributes of the PS moveout function</td>
<td>204</td>
</tr>
<tr>
<td>5.2 Application to a VTI layer</td>
<td>208</td>
</tr>
<tr>
<td>5.2.1 Weak-anisotropy approximation for PS moveout</td>
<td>208</td>
</tr>
<tr>
<td>5.2.2 Recovery of PS-wave moveout curve</td>
<td>213</td>
</tr>
<tr>
<td>5.3 3-D treatment of PS-wave moveout for layered media</td>
<td>219</td>
</tr>
<tr>
<td>5.3.1 2-D expressions for vertical symmetry planes</td>
<td>219</td>
</tr>
<tr>
<td>5.3.2 3-D description of PS moveout</td>
<td>223</td>
</tr>
<tr>
<td>5.3.3 Moveout attributes in layered media</td>
<td>226</td>
</tr>
<tr>
<td>5.4 PS-wave moveout in horizontally layered VTI media</td>
<td>228</td>
</tr>
<tr>
<td>5.4.1 Taylor series coefficients</td>
<td>228</td>
</tr>
<tr>
<td>5.4.2 Nonhyperbolic moveout equation</td>
<td>230</td>
</tr>
<tr>
<td>5.5 Discussion</td>
<td>231</td>
</tr>
</tbody>
</table>

Appendices for Chapter 5
- 5A 2-D description of PS moveout in a single layer: 233
- 5B 3-D expression for the slope of CMP moveout: 235
- 5C NMO velocity for converted-wave moveout: 239
- 5D Weak-anisotropy approximation for PS-moveout in VTI media:
 - 5D.1 Parametric expressions for the traveltime curve: 241
 - 5D.2 Moveout attributes: 244
- 5E 3-D description of PS moveout in layered media:
 - 5E.1 Single anisotropic layer: 246
 - 5E.2 Layered media: 249
 - 5E.3 2-D relationships for symmetry planes: 251

6 P-wave time-domain signatures in transversely isotropic media

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.1 P-wave NMO velocity as a function of ray parameter</td>
<td>254</td>
</tr>
<tr>
<td>6.1.1 2-D analysis for a VTI layer</td>
<td>254</td>
</tr>
<tr>
<td>6.1.2 Dip plane of a layered medium</td>
<td>261</td>
</tr>
<tr>
<td>6.1.3 3-D analysis using the NMO ellipse</td>
<td>263</td>
</tr>
<tr>
<td>6.2 Two-parameter description of time processing</td>
<td>264</td>
</tr>
<tr>
<td>6.2.1 Migration impulse response</td>
<td>264</td>
</tr>
<tr>
<td>6.2.2 Brief summary</td>
<td>266</td>
</tr>
<tr>
<td>6.3 Discussion: Notation and P-wave signatures in VTI media</td>
<td>269</td>
</tr>
<tr>
<td>6.3.1 Advantages of Thomsen parameters</td>
<td>269</td>
</tr>
<tr>
<td>6.3.2 Influence of vertical transverse isotropy on P-wave signatures</td>
<td>270</td>
</tr>
<tr>
<td>6.4 Moveout analysis for tilted symmetry axis</td>
<td>272</td>
</tr>
<tr>
<td>6.4.1 NMO velocity as a function of ray parameter</td>
<td>272</td>
</tr>
<tr>
<td>6.4.2 Parameter η for tilted axis of symmetry</td>
<td>274</td>
</tr>
<tr>
<td>6.4.3 Discussion</td>
<td>281</td>
</tr>
</tbody>
</table>
Appendices for Chapter 6

6A Dependence of NMO velocity in VTI media on the ray parameter . . 283
 6A.1 Building the function $V_{nmo}(p)$ 283
 6A.2 Elliptical anisotropy 283
 6A.3 Weak transverse isotropy 284

6B NMO velocity in tilted elliptical media 285

7 Velocity analysis and parameter estimation for VTI media 287

7.1 P-wave dip-moveout inversion for η 289
 7.1.1 Inversion in the dip plane of a VTI layer 289
 7.1.2 2-D inversion in vertically heterogeneous media 291
 7.1.3 3-D inversion of azimuthally varying NMO velocity 297
 7.1.4 Field-data example 302
 7.1.5 Discussion ... 310
 7.2 Inversion of P-wave nonhyperbolic moveout 312
 7.2.1 Single VTI layer 312
 7.2.2 Nonhyperbolic velocity analysis for layered media ... 321
 7.2.3 Field-data examples 327
 7.2.4 Discussion ... 333
 7.3 Joint inversion of P and PS data 334
 7.3.1 S-waves in parameter estimation for VTI media 335
 7.3.2 2-D inversion of horizontal and dipping events 337
 7.3.3 3-D inversion of wide-azimuth data 346
 7.3.4 Discussion ... 347

8 P-wave imaging for VTI media 353

 8.1 Fowler-type time-processing method 354
 8.1.1 Fowler DMO in isotropic media 355
 8.1.2 Extension to VTI media 356
 8.1.3 Synthetic example 360
 8.1.4 Field-data example 365
 8.1.5 Discussion ... 368
 8.2 Dip moveout by Fourier transform 369
 8.2.1 Hale’s DMO method 370
 8.2.2 2-D Hale DMO for anisotropic media 372
 8.2.3 Application to VTI media 373
 8.2.4 Synthetic examples 375
 8.2.5 Discussion ... 384
 8.3 Time and depth migration 385
 8.3.1 Phase-shift (Gazdag) migration 385
 8.3.2 Gaussian beam migration 389
 8.4 Synthetic example for a model from the Gulf of Mexico 400
 8.4.1 Parameter estimation 400
 8.4.2 Depth migration 403