Contents

Preface xix
Acknowledgments xxi
Editors xxiii
Contributors xxv

PART I
Properties 1

1 Constructing multivariate distributions for soil parameters 3

JIANYE CHING AND KOK-KWANG PHOON

1.1 Introduction 3

1.2 Normal random variable 5
 1.2.1 Random data 5
 1.2.2 Normal random variable 6
 1.2.2.1 Probability density function 6
 1.2.2.2 Cumulative distribution function 9
 1.2.3 Estimation of normal parameters 12
 1.2.3.1 Method of moments 13
 1.2.3.2 Percentile method 13
 1.2.3.3 Maximum likelihood method 14
 1.2.3.4 Normal probability plot 15
 1.2.3.5 Statistical uncertainties in the \(\mu \) and \(\sigma \) estimators 15
 1.2.4 Simulation of a normal random variable 20
 1.2.4.1 Simulating standard uniform random variable U 20
 1.2.4.2 Simulating standard normal random variable X 20
 1.2.4.3 Simulating normal random variable Y 21

1.3 Bivariate normal vector 21
 1.3.1 Bivariate data 21
 1.3.2 Bivariate normal distribution 23
 1.3.2.1 Bivariate standard normal 24
 1.3.2.2 Correlation coefficient 24
 1.3.3 Estimation of \(\delta_{12} \) 24
 1.3.3.1 Method of moments 24
 1.3.3.2 Maximum likelihood method 25
1.3.3.3 Rank correlation method 26
1.3.3.4 Statistical uncertainties in the δ_{ij} estimate 27
1.3.3.5 Goodness-of-fit test (the line test) 28

1.3.4 Simulation of bivariate standard normal random variables 29

1.4 Multivariate normal vector 30
1.4.1 Multivariate data 30
1.4.2 Multivariate normal distribution 32
1.4.3 Estimation of correlation matrix C 32
1.4.3.1 Positive definiteness of the correlation matrix C 34
1.4.3.2 Goodness-of-fit test 35
1.4.4 Simulation of multivariate standard normal random vector X 37
1.4.5 Conditional normal and updating 38

1.5 Non-normal random variable 42
1.5.1 Non-normal data 42
1.5.2 Non-normal distribution 44
1.5.2.1 Lognormal and shifted lognormal distributions 44
1.5.2.2 Johnson system of distributions 45
1.5.3 Selection and parameter estimation
for the Johnson distribution 46
1.5.3.1 Probability plot and the goodness-of-fit test (K-S test) 48
1.5.4 Simulation of the Johnson random variable 50
1.5.5 Some practical observations 51
1.5.5.1 Choice of z 51
1.5.5.2 Parameter estimation under prescribed lower and/or upper bound 52

1.6 Multivariate non-normal random vector 53
1.6.1 Multivariate non-normal data 53
1.6.2 CDF transform approach 54
1.6.3 Estimation of the marginal distribution of Y 54
1.6.4 Estimation of the correlation matrix C 56
1.6.5 Simulation 58
1.6.6 Some practical observations 58

1.7 Real example 60
1.7.1 Clay/10/7490 database 61
1.7.2 Construction of multivariate distribution 63
1.7.2.1 Fit a Johnson distribution to each component (Y_i) 63
1.7.2.2 Convert Y_i into standard normal X_i 63
1.7.2.3 Compute the correlation matrix for (X_1, X_2, ..., X_{10}) 64
1.7.2.4 Problem of nonpositive definiteness 64
1.7.3 Conditioning: Bayesian analysis 67

1.8 Future challenges 72

List of symbols 72
References 74
2 Modeling and simulation of bivariate distribution of shear strength parameters using copulas
DIAN-QING LI AND XIAO-SONG TANG

2.1 Introduction 77

2.2 Copula theory 78
2.2.1 Definition of copulas 78
2.2.2 Dependence measures 80
2.2.2.1 Pearson’s rho 80
2.2.2.2 Kendall’s tau 83
2.2.3 Four selected copulas 85

2.3 Modeling bivariate distribution of shear strength parameters 88
2.3.1 Measured data of cohesion and friction angle 89
2.3.2 Identification of best-fit marginal distributions 89
2.3.3 Identification of best-fit copula 95

2.4 Simulating bivariate distribution of shear strength parameters 98
2.4.1 Algorithms for simulating bivariate distribution 98
2.4.1.1 Gaussian copula 98
2.4.1.2 Plackett copula 98
2.4.1.3 Frank and No.16 copulas 99
2.4.2 Simulation of copulas and bivariate distribution 99

2.5 Impact of copula selection on retaining wall reliability 102
2.5.1 Retaining wall example 103
2.5.2 Probability of failure using direct integration 104
2.5.3 Nominal factor of safety for retaining wall stability 106
2.5.4 Reliability results produced by different copulas 107
2.5.4.1 Effect of geometrical parameters on probability of failure 107
2.5.4.2 Effect of COV of shear strength parameters on probability of failure 108
2.5.4.3 Effect of correlation between cohesion and friction angle on probability of failure 108
2.5.5 Discussions 110

2.6 Summary and conclusions 115

Acknowledgments 115
Appendix 2A: MATLAB® codes 115
List of symbols 125
References 126

PART II
Methods

3 Evaluating reliability in geotechnical engineering
J. MICHAEL DUNCAN AND MATTHEW D. SLEEP
3.1 Purpose of reliability analysis 131
3.2 Probability of failure and risk 132
3.3 Language of statistics and probability
3.3.1 Variables
3.3.2 Correlated and uncorrelated variables
3.3.3 Standard deviation
3.3.4 Coefficient of variation
3.3.5 Histograms and relative frequency diagrams
3.3.6 Probability and probability theory
3.3.7 Probability density function
3.3.8 Normal and lognormal distributions
3.3.9 Lognormal distribution
3.3.10 Cumulative density function
3.3.11 Probability of failure
3.3.12 Reliability
3.3.13 Reliability index
3.3.14 Probability of failure on the CDF curve
3.3.15 Reliability index for normally distributed factor of safety
3.3.16 Reliability index for a lognormally distributed factor of safety
3.3.17 Effect of standard deviation on estimated value of probability of failure
3.4 Probability of failure and factor of safety
3.4.1 What is “failure?”
3.4.2 Assumed distribution of the factor of safety
3.5 Methods of estimating standard deviations
3.5.1 Computation from data
3.5.2 Published values
3.5.3 The “three-sigma rule”
3.5.4 The “N-sigma rule”
3.5.6 Graphical N-sigma rule
3.6 Computing probability of failure
3.6.1 Deterministic analyses
3.6.2 Factor of safety against sliding on top of the silty sand layer
3.6.3 Factor of safety against sliding on the clay foundation
3.6.4 Factor of safety against bearing capacity failure
3.7 Monte Carlo analysis using @Risk™
3.7.1 Accuracy of calculations
3.8 Hasofer Lind method
3.8.1 Summary of the Hasofer Lind method
3.9 Taylor Series method with assumed normal distribution of the factor of safety
3.9.1 Summary of the Taylor Series method
3.10 Taylor Series method with a lognormal distribution of the factor of safety
3.10.1 Summary of the Taylor Series method
3.11 PEM with a normal distribution for the factor of safety
3.12 PEM with a lognormal distribution for the factor of safety
3.12.1 Summary of the PEM
3.13 Comments on the methods
3.13.1 Significance of the variables 177
3.13.2 Accuracy 177
3.14 Summary 177
References 178

4 Maximum likelihood principle and its application in soil liquefaction assessment
CHARNG HSEIN JUANG, SARA KHOSHNEVISAN, AND JIE ZHANG
4.1 Introduction 181
4.2 Principle of maximum likelihood 182
 4.2.1 Independent observations 183
 4.2.2 Correlated observations 186
 4.2.3 Censored observations 188
 4.2.4 Ranking of competing models 192
 4.2.5 Limitations of the maximum likelihood method 194
4.3 Liquefaction probability based on generalized linear regression 194
 4.3.1 Predicting liquefaction probability based on generalized linear models 194
 4.3.2 Calibration database 196
 4.3.3 Evaluation of sampling bias 196
 4.3.4 Calibration of liquefaction models 204
 4.3.5 Ranking of liquefaction models 204
4.4 Converting a deterministic liquefaction model into a probabilistic model 204
 4.4.1 Probabilistic model 205
 4.4.2 Calibration and ranking of P_L-F_s relationships 206
4.5 Estimation of liquefaction-induced settlement 207
 4.5.1 Probabilistic model for predicting liquefaction-induced settlement 207
 4.5.2 Calibration database 210
 4.5.3 Maximum likelihood estimation of statistics of model bias factor 210
4.6 Summary and conclusions 213
Acknowledgments 214
Appendix 4B: Notation 216
References 217

5 Bayesian analysis for learning and updating geotechnical parameters and models with measurements
DANIEL STRAUB AND IASON PAPAIOANNOU
5.1 Introduction 221
5.2 Bayesian analysis 222
5.3 Geotechnical reliability based on measurements: Step-by-step procedure for Bayesian analysis 227
 5.3.1 Initial probabilistic model: Prior distribution 227
 5.3.1.1 Modeling spatially variable parameters 229
 5.3.2 Computing the reliability and risk based on the prior model 230
<table>
<thead>
<tr>
<th>5.3.3</th>
<th>Describing observations and data: The likelihood</th>
<th>231</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3.1</td>
<td>Measurement x_i of a parameter X</td>
<td>231</td>
</tr>
<tr>
<td>5.3.3.2</td>
<td>Samples of a spatially variable parameter</td>
<td>232</td>
</tr>
<tr>
<td>5.3.3.3</td>
<td>Measurement of site performance parameters</td>
<td>232</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Updating the model</td>
<td>235</td>
</tr>
<tr>
<td>5.3.4.1</td>
<td>Conjugate priors</td>
<td>235</td>
</tr>
<tr>
<td>5.3.4.2</td>
<td>Numerical integration to determine the proportionality constant</td>
<td>237</td>
</tr>
<tr>
<td>5.3.4.3</td>
<td>Advanced sampling methods</td>
<td>238</td>
</tr>
<tr>
<td>5.3.4.4</td>
<td>Multinormal approximation of the posterior</td>
<td>238</td>
</tr>
<tr>
<td>5.3.4.5</td>
<td>Direct updating of the reliability</td>
<td>239</td>
</tr>
<tr>
<td>5.3.4.6</td>
<td>Predictive distributions</td>
<td>239</td>
</tr>
<tr>
<td>5.3.5</td>
<td>Updating reliability and risk estimates</td>
<td>242</td>
</tr>
<tr>
<td>5.3.6</td>
<td>Communicating the results</td>
<td>243</td>
</tr>
<tr>
<td>5.4</td>
<td>Advanced algorithms for efficient and effective Bayesian updating of geotechnical models</td>
<td>245</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Markov chain Monte Carlo</td>
<td>245</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Sequential Monte Carlo</td>
<td>248</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Bayesian updating with structural reliability methods</td>
<td>249</td>
</tr>
<tr>
<td>5.5</td>
<td>Application: Foundation of transmission towers under tensile loading</td>
<td>250</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Prior probabilistic model</td>
<td>251</td>
</tr>
<tr>
<td>5.5.2</td>
<td>Reliability analysis based on the prior model</td>
<td>252</td>
</tr>
<tr>
<td>5.5.3</td>
<td>Updating with CPT test outcomes</td>
<td>252</td>
</tr>
<tr>
<td>5.5.4</td>
<td>Updating with survived loading conditions</td>
<td>253</td>
</tr>
<tr>
<td>5.6</td>
<td>Application: Finite-element-based updating of soil parameters and reliability</td>
<td>255</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Prior probabilistic model</td>
<td>257</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Updating the soil parameters with deformation measurements</td>
<td>257</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Updating the reliability with deformation measurements</td>
<td>259</td>
</tr>
<tr>
<td>5.7</td>
<td>Concluding remarks</td>
<td>261</td>
</tr>
</tbody>
</table>

Acknowledgment | 261
References | 262

6 Polynomial chaos expansions and stochastic finite-element methods | 265
BRUNO SUDRET

6.1 | Introduction | 265
6.2 | Uncertainty propagation framework | 266
| 6.2.1 | Introduction | 266 |
| 6.2.2 | Monte Carlo simulation | 267 |
6.3 | Polynomial chaos expansions | 268
| 6.3.1 | Mathematical setting | 268 |
| 6.3.2 | Construction of the basis | 268
| 6.3.2.1 | Univariate orthonormal polynomials | 268
| 6.3.2.2 | Multivariate polynomials | 269 |
| 6.3.3 | Practical implementation | 270
| 6.3.3.1 | Isoprobabilistic transform | 270 |
9 Reliability-based design: Practical procedures, geotechnical examples, and insights

BAK-KONG LOW

9.1 Introduction 355
9.1.1 Three spreadsheet FORM procedures and intuitive dispersion ellipsoid perspective 356

9.2 Example of reliability-based shallow foundation design 359
9.2.1 RBD compared with EC7 or LRFD design, and complementary roles of RBD to EC7 and LRFD design 360

9.3 SORM analysis on the foundation of FORM results for a rock slope 363
9.3.1 Constrained optimizational FORM spreadsheet approach with respect to the \(u \) vector 363
9.3.2 Positive reliability index only if the mean-value point is in the safe domain 364

9.4 Probabilistic analyses of a slope failure in San Francisco Bay mud 365

9.5 Reliability analysis of a Norwegian slope accounting for spatial autocorrelation 367

9.6 System FORM reliability analysis of a soil slope with two equally likely failure modes 368

9.7 Multicriteria RBD of a laterally loaded pile in spatially autocorrelated clay 371
9.7.1 Illustrative example of multicriteria RBD of a laterally loaded pile 373

9.8 FORM design of an anchored sheet pile wall 374

9.9 Reliability analysis of roof wedges and rockbolt forces in tunnels 375

9.10 Probabilistic settlement analysis of a Hong Kong trial embankment on soft clay 380
9.10.1 LSS and performance functions \(g(x) \) pertaining to magnitude and rate of soft clay settlement 381
9.10.2 Distinguishing positive and negative reliability indices 383
9.10.3 Reliability analysis for different limiting state surfaces 384
9.10.4 Obtaining probability of failure \((P_f) \) and CDF from \(\beta \) indices 384
9.10.5 Obtaining PDF curves from \(\beta \) index 387

9.11 Coupling of stand-alone deterministic program and spreadsheet-automated reliability procedures via response surface or similar methods 390

9.12 Summary and conclusions 390

References 391

10 Managing risk and achieving reliable geotechnical designs using Eurocode 7 395

TREVOR L.L. ORR

10.1 Introduction 395
10.2 Geotechnical complexity and risk 395
10.2.1 Factors affecting complexity 395
10.2.2 Levels of risk and Geotechnical Categories 396
10.2.3 Risks due to adverse water pressures 399
10.2.4 Geotechnical investigations and geotechnical risks 399
10.3 Reliability requirements in designs to Eurocode 7 399
10.3.1 Basic requirement 399
10.3.2 Measures to achieve reliable designs 400
10.3.3 Design assumptions for reliable designs 402
10.4 Verification of designs to Eurocode 7 403
10.4.1 Limit state design method 403
10.4.2 Verification by use of calculations 403
10.4.2.1 Design equations and their components 403
10.4.2.2 Design geometrical data 404
10.4.2.3 Design actions 406
10.4.2.4 Design geotechnical parameters 407
10.4.2.5 Design effects of actions and design resistances 408
10.4.3 Characteristic parameter values 408
10.4.3.1 Definition and selection of characteristic values 408
10.4.3.2 Aleatory variability and epistemic uncertainty 410
10.4.3.3 Selection of aleatory characteristic parameter values 411
10.4.3.4 Example 10.1: Selection of characteristic parameter values 416
10.4.3.5 Characteristic pile compressive resistances 417
10.4.4 Partial factors, safety levels and reliability 419
10.4.4.1 Types of ultimate limit state and recommended partial factor values 419
10.4.4.2 Example 10.2: Determination of the design soil resistance on walls against uplift 421
10.4.4.3 Example 10.3: Design of a basement against uplift 424
10.5 Reliability levels 424
10.5.1 Partial factors, uncertainty, calibration, and target reliability 424
10.5.2 Partial factors in spread and pile foundations designs 426
10.5.3 Reliability differentiation 428
10.6 Conclusions 430
Acknowledgments 431
References 432

PART IV
Risk and decision

11 Practical risk assessment for embankments, dams, and slopes
LUIS ALTAREJOS-GARCÍA, FRANCISCO SILVA-TULLA, IGNACIO ESCUDER-BUENO, AND ADRIÁN MORALES-TORRES
11.1 Introduction 437
11.2 Estimation of conditional probability as a function of safety factor 438
11.2.1 FS versus p(f) charts for slope instability and soil transport 438
11.2.2 Example of risk assessment for an earth dam based on the empirical FS versus p(f) charts 443
11.2.2.1 Estimation of failure probabilities versus peak pool elevation: Example from engineering practice 443
11.2.2.2 Estimation of peak pool elevation annual exceedance probabilities 445
11.2.2.3 Estimation of potential loss of life versus peak pool elevation at time of failure 445
11.2.2.4 Comparison of results with risk evaluation guidelines 447
11.3 Role of fragility curves to evaluate the uncertainty in probability estimates 450
11.3.1 Concept of uncertainty 450
11.3.2 Concept of fragility curves 451
11.3.3 Role of fragility curves in risk analysis 452
11.4 Mathematical roots and numerical estimation of fragility curves 453
11.4.1 Introduction 453
11.4.2 Conditional probability of failure versus FS 455
11.4.3 Building fragility curves 457
11.4.4 Example of fragility analysis for stability failure mode of an earth dam 459
11.5 From fragility curves to annualized probability of failure commonly used in risk analysis 463
11.6 Summary of main points 467
Acknowledgments 467
List of main symbols and acronyms 467
References 468

12 Evolution of geotechnical risk analysis in North American practice 471
GREGORY B. BAECHER AND JOHN T. CHRISTIAN
12.1 Introduction 471
12.2 Beginnings 472
12.3 Geotechnical reliability (1971–1996) 473
 12.3.1 Probabilistic veneer on deterministic models 473
 12.3.2 Variability of soil-engineering properties 474
 12.3.3 Slope stability analysis 475
 12.3.4 Lumped versus distributed parameter models 476
 12.3.5 Aleatory versus epistemic uncertainty 477
12.4 Mining engineering (1969–1980) 477
12.5 Offshore reliability (1974–1990) 478
12.6 Environmental remediation (1980–1995) 479
12.7 Dam safety (1986–ongoing) 479
12.8 Systems risk assessment (2005–ongoing) 480
 12.8.1 New Orleans 480
 12.8.2 California delta 481
 12.8.3 Risk registers 482
12.9 Emerging approaches: System simulation, stress testing, and scenario appraisals 482
12.9.1 Systems simulation methods 483
12.9.2 Stress testing and scenario analysis 484
12.9.3 Dynamic risk analysis and management 485
12.10 Ten unresolved questions 485
12.11 Concluding thoughts 487
Acknowledgments 487
References 487

13 Assessing the value of information to design site investigation and construction quality assurance programs
ROBERT B. GILBERT AND MAHDI HABIBI
13.1 Introduction 491
13.2 Value of information framework 491
13.2.1 Decision analysis 491
13.2.2 Illustrative example: Remediation of contaminated lagoon 493
13.3 Insights from Bayes’ theorem 498
13.3.1 Prior probabilities 498
13.3.2 Likelihood functions 500
13.3.3 Illustrative example: Design of pile foundation 502
13.4 Implementation of value of information assessment 509
13.4.1 Analytical methods 509
13.4.2 Illustrative example: Design quality control program for compacted fill 509
13.4.3 Numerical methods 515
13.4.4 Illustrative example: Pile foundation load tests 517
13.5 Case-history applications 519
13.5.1 Site investigation for foundation design 519
13.5.2 Remedial investigation for a contaminated site 522
13.5.3 Exploration program for resources 525
13.5.4 QA/QC testing 528
13.6 Summary 529
Acknowledgments 531
References 531

14 Verification of geotechnical reliability using load tests and integrity tests
LIMIN ZHANG
14.1 Introduction 533
14.2 Within-site variability of pile capacity 534
14.3 Updating pile capacity with proof load tests 536
14.3.1 Proof load tests that pass 536
14.3.2 Proof load tests that do not pass 537
14.3.3 Proof load tests conducted to failure 538
14.3.4 Multiple types of tests 538
14.4 Updating pile capacity with integrity tests 539
14.4.1 Reliability updating based on integrity tests 539
14.4.2 Updating occurrence probability of toe debris 540
14.4.3 Updating mean thickness of toe debris 541
14.4.4 Cases of test outcome 541

14.5 Reliability of piles verified by proof load tests 542
14.5.1 Calculation of reliability index 542
14.5.2 Example: Design based on SPT and verified by proof load tests 543
14.5.3 Accuracy effect of design methods 546

14.6 Reliability of piles verified by integrity tests 548
14.6.1 Worked example 548
14.6.2 Survey of toe debris 550
14.6.3 Updating the priors based on interface coring tests 551
14.6.4 Updating reliability of piles based on interface coring tests 553

14.7 Summary 555

Acknowledgment 556
List of symbols 556
References 557

PART V
Spatial variability

15 Application of the subset simulation approach to spatially varying soils 561

ASHRAF AHMED AND ABDUL-HAMID SOUBRA

15.1 Introduction 561
15.2 Karhunen–Loève expansion methodology for the discretization of a random field 561
15.3 Brief overview of the subset simulation approach 564
15.4 Method of computation of the failure probability by the SS approach in the case of a spatially varying soil property 565
15.5 Example applications 567
15.5.1 Example 1: Generation of a random field by K–L expansion 567
15.5.2 Example 2: Computation of the failure probability by SS approach in the case of random variables 569
15.5.3 Example 3: Computation of the failure probability by an SS approach in the case of random fields 572
15.6 Conclusion 574

Appendix 15A: Modified M–H algorithm 575
List of symbols 576
References 577

Index 579