GEODYNAMICS Applications of Continuum Physics to Geological Problems

Donald L. Turcotte

Professor of Geological Sciences Cornell University

Gerald Schubert

Professor of Geophysics and Planetary Physics University of California, Los Angeles

John Wiley & Sons New York Chichester Brisbane Toronto Singapore

table of contents

1. Plate Tectonics

1-1	Introduction	1
1-2	The Lithosphere	6
1-3	Accreting Plate Margins	7
1-4	Subduction	11
1-5	Transform Faults	15
1-6	Continents	16
1-7	Paleomagnetism and the Motion	
	of the Plates	21
1-8	Triple Junctions	34
1-9	The Wilson Cycle	37
1-10	Continental Collisions	41
1-11	Volcanism and Heat Flow	43
1-12	Seismicity and the State of Stress	
	in the Lithosphere	54
1-13	The Driving Mechanism	58
1-14	Comparative Planetology	59
1-15	The Moon	59
1-16	Mercury	62
1-17	Mars Mars	63
1-18	Phobos and Deimos	66
1-19	Venus	66
1-20	The Galilean Satellites	68
2. Str	ess and Strain in Solids	74
2-1	Introduction	74
2-2	Body Forces and Surface Forces	74
2-3	Stress in Two Dimensions	80
2-4	Stress in Three Dimensions	84
2-5	Pressures in the Deep Interiors of	
	Planets	85

2-6	Stress Measurement	86
2-7	Basic Ideas about Strain	88
2-8	Strain Measurements	95

3. El	asticity and Flexure	104
3-1	Introduction	104
3-2	Linear Elasticity	105
3-3	Uniaxial Stress	106
3-4	Uniaxial Strain	108
3-5	Plane Stress	109
3-6	Plane Strain	110
3-7	Pure Shear and Simple Shear	111
3-8	Isotropic Stress	112
3-9	Two-Dimensional Bending or	
	Flexure of Plates	112
3-10	Bending of Plates under Applied	
	Moments and Vertical Loads	115
3-11	Buckling of a Plate under a	
	Horizontal Load	118
3-12	Deformation of Strata Overlying	
	an Igneous Intrusion	119
3-13	Application to the Earth's Lithosphere	121
3-14	Periodic Loading	122
3-15	Stability of the Earth's Lithosphere	
	under an End Load	124
3-16	Bending of the Elastic Lithosphere	
	under the Loads of Island Chains	125
3-17	Bending of the Elastic Lithosphere	
	at an Ocean Trench	128
3-18	Flexure and the Structure of	
	Sedimentary Basins	131
		vii

VIII CONTENTS

4. Heat Transfer

4-1	Introduction		
4-2	Fourier's Law of Heat Conduction		
4-3	Measuring the Earth's Surface		
	Heat Flux		
4-4	The Earth's Surface Heat Flow		
4-5	Heat Generation by the Decay of		
	Radioactive Elements		
4-6	One-Dimensional Steady		
	Heat Conduction with		
	Volumetric Heat Production		
4-7	A Conduction Temperature Profile		
	for the Mantle		
4-8	Continental Geotherms		
4-9	Radial Heat Conduction in a		
	Sphere or Spherical Shell		
4-10	Temperatures in the Moon		
4-11	Steady Two- and Three-Dimensional		
	Heat Conduction		
4-12	Subsurface Temperature Due to		
	Periodic Surface Temperature		
	and Topography		
4-13	One-Dimensional, Time-Dependent		
	Heat Conduction		
4-14	Periodic Heating of a Semi-Infinite		
	Half-Space: Diurnal and Seasonal		
	Changes in Subsurface Temperature		
4-15	Instantaneous Heating or Cooling of		
	a Semi-Infinite Half-Space		
4-16	Cooling of the Oceanic Lithosphere		
4-17	The Stefan Problem		
4-18	Solidification of a Dike or Sill		
4-19	The Heat Conduction Equation in a		
	Moving Medium: Thermal Effects		
	of Erosion and Sedimentation		
4-20	One-Dimensional, Unsteady Heat		
	Conduction in an Infinite Region		
4-21	Thermal Stresses		
4-22	Ocean Floor Topography		
4-23	Changes in Sea Level		
4-24	Thermal and Subsidence History of		
	Sedimentary Basins		
4-25	Heating or Cooling a Semi-Infinite		
	Half-Space by a Constant Surface		
	Heat Flux		

134	4-26	Frictional Heating on Faults: Island	
134		Arc Volcanism and Melting on the	
134		Surface of the Descending Slab	189
155	4-27	Mantle Geotherms and Adiabats	190
135	4-28	Thermal Structure of the Subducted	
135		Lithosphere	195
157			
139	5. Gra	avity	198
	5-1	Introduction	198
142	5-2	Gravitational Acceleration External	
142	1.11	to the Rotationally Distorted Earth	199
144	5-3	Centrifugal Acceleration and the	
144		Acceleration of Gravity	204
145	5-4	The Gravitational Potential and	
148		the Geoid	204
140	5-5	Moments of Inertia	210
150	5-6	Surface Gravity Anomalies	212
151	5-7	Bouguer Gravity Formula	216
151	5-8	Reductions of Gravity Data	218
	5-9	Compensation	218
152	5-10	The Gravity Field of a Periodic	
152		Mass Distribution on a Surface	219
154	5-11	Compensation Due to Lithospheric	
151		Flexure	221
	5-12	Isostatic Geoid Anomalies	222
155	5-13	Compensation Models and Observed	
		Geoid Anomalies	225
158			
163	6 El.	uid Mechanics	231
168	0. FI	ind mechanics	
172	6-1	Introduction	231
	6-2	One-Dimensional Channel Flows	232
	6-3	Asthenospheric Counterflow	235
174	6-4	Pipe Flow	237
	6-5	Artesian Aquifer Flows	239
176	6-6	Flow through Volcanic Pipes	240
178	6-7	Conservation of Fluid in Two	2.10
181		Dimensions	240
183	6-8	Elemental Force Balance in Two	241
		Dimensions	241
185	6-9	The Stream Function	243
	6-10	Postglacial Rebound	244
100	6-11	Angle of Subduction	249 251
188	6-12	Diapirism	231

				CONTENT
6-13	Folding	257	8-5	Thread Shart 1 C is straight
6-14		263	8-6	Thrust Sheets and Gravity Sliding
6-15	Pipe Flow with Heat Addition	268	8-7	Stick-Slip and Elastic Rebound
6-16	Aquifer Model for Hot Springs	200	8-8	San Andreas Fault
6-17	Thermal Convection	272	8-9	North Anatolian Fault
6-18		212	8-9	Some Elastic Solutions for Strike-Slip
	Onset of Thermal Convection in a		8-10	Faulting
	Layer of Fluid Heated from Below	274	8-11	Stress Diffusion
6-19	Boundary Layer Theory for Finite-	214	0-11	Thermally Activated Creep on Faults
	Amplitude Thermal Convection	279		
6-20	The Forces That Drive Plate Tectonics	286	9. Flo	ow in Porous Media
6-21	Heating by Viscous Dissipation	289	9-1	
		207	9-1	Introduction
			9-2	Darcy's Law
7. Re	ock Rheology	294	9-3 9-4	Permeability Models
7-1	Introduction	294	9-4	Flow in Confined Aquifers
7-2	Elasticity	294	9-6	Flow in Unconfined Aquifers
7-3	Diffusion Creep	303	9-7	Geometrical Form of Volcanoes
7-4	Dislocation Creep	311	9-1	Equations of Conservation of
7-5	Shear Flows of Fluids with	511		Mass, Momentum, and Energy for Flow in a Porous Media
	Temperature- and Stress-Dependent		9-8	
	Rheologies	315	J-0	One-Dimensional Advection of Heat in a Porous Medium
7-6	Mantle Rheology	325	9-9	Thermal Convection in a
7-7	Rheological Effects on Mantle	545		Porous Layer
	Convection	330	9-10	Thermal Plumes in Fluid Saturated
7-8	Mantle Convection and the Cooling	550	>-10	Porous Media
	of the Earth	332	9-11	Porous Flow Model for Magma
7-9	Crustal Rheology	335		Migration
7-10	Viscoelasticity	337	9-12	Two-Phase Convection
7-11	Elastic-Perfectly Plastic Behavior	341	- 12	1 wo I hase convection
		511		
			Apper	
8. Faulting		348	Apper	ndix 2 Physical Constants and
8-1	Introduction	348		Properties
8-2	Classification of Faults	348		
8-3	Friction on Faults	351	Aneur	ars to Solosted Decklose
8-4	Anderson Theory of Faulting	354	Index	ers to Selected Problems
		554	muex	

CONTENTS IX