CONTOURING
GEOLOGIC
SURFACES
WITH THE
COMPUTER

THOMAS A. JONES
DAVID E. HAMILTON
CARLTON R. JOHNSON

Exxon Production Research Company

VAN NOSTRAND REINHOLD COMPANY
New York
Contents

<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>ix</td>
<td>Series Editor’s Foreword</td>
<td></td>
</tr>
<tr>
<td>xi</td>
<td>Preface</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Computers, Contouring, and Geologic Interpretation</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Introduction to Computer Mapping</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Incorporating Geologic Interpretation</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td>About the Book</td>
<td>6</td>
</tr>
<tr>
<td>2</td>
<td>Contouring and Geologic Concepts</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Contouring</td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>Stratigraphy</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Structure</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td>Reservoir Properties</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>Input Data for Computer Mapping</td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Organization of Data</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Data Edit and Error Checking</td>
<td>38</td>
</tr>
<tr>
<td></td>
<td>Data Calculations</td>
<td>40</td>
</tr>
<tr>
<td>4</td>
<td>Simple Grids and Contour Maps</td>
<td>43</td>
</tr>
<tr>
<td></td>
<td>Defining a Grid</td>
<td>44</td>
</tr>
<tr>
<td></td>
<td>Constructing a Grid</td>
<td>45</td>
</tr>
</tbody>
</table>
Contents

- **Contouring Techniques** 58
- **Other Displays** 62

5 Data Characteristics Requiring Special Handling 67
- Separating Stratigraphic Picks from Unconformity Picks 68
- Supplemental Data for Grid Control 74
- Merging Data from Different Sources 77
- Data That Represent Limits 87

6 Building the Stratigraphic Framework 93
- Grid Operations 94
- Geologic Interpretation 94
- Conformable Surfaces 100
- Truncation and Baselap 114
- Combining Interpretation, Conformity, Truncation, and Baselap 118

7 Displaying Stratigraphic Relationships 127
- Cross Sections 127
- Subcrop Maps 131
- Isochore Maps 136

8 Faulting 141
- Fault-Block Method 142
- Fault-Trace Method 151
- Restored-Surface Method 157
- Fault-Plane Method 168

9 Forcing Interpretation into Grids 175
- Digitized Contour Maps 175
- Controlling the Zero-Line in Isochore Maps 183
- Biased Gridding 198

10 Selected Petroleum Applications 205
- Fluid Contacts 205
- Mapping Gross Rock Thickness 208
- Volumetrics 212

11 Trend Analysis 235
- Appropriateness of Data 236
- Creating Trend Surfaces 237
- Creating a Residual Grid 246
- Evaluation of the Trends and Residuals 247
- Example Application 248
- Other Uses of Filters and Filter Analogues 252

12 Historical Reconstruction 255
- Stratigraphic and Structural Considerations 256
- Data Capture 256
- Construction of the Grids 261
- Showing the Reconstructed History 265

Afterword 273

Appendix A: Program Capabilities 277
- Data Entry 277
- Null Values 278
- Data Calculations and Modification 278
- Base Map 279
- Grids or Grid Equivalents 280
- Grid Creation 281
- Executive System and Grid File 281
- Plotter Contouring 282
- Calculations on or between Grids 283
- Inverse Interpolation 284
- Grid-to-Data 285
- Cross Sections and Profiles 285
- Displays on the Printer 286
- Polygons 286
- Integration 287
- Trend Surfaces and Filters 287
- Utilities 287

Appendix B: Stratigraphic Example 289

References 299

Index 309