SOIL MECHANICS AND FOUNDATION ENGINEERING, 2

WALL AND FOUNDATION CALCULATIONS, SLOPE STABILITY

GUY SANGLERAT GILBERT OLIVARI BERNARD CAMBOU

Translated by G. GENDARME

ELSEVIER
Amsterdam - Oxford - New York - Tokyo 1985

CONTENTS

Intro	duction	V
	tions	IX
	neering Units	XIII
00 84240 - 1900		
	ter 7. Retaining Walls	12
7.1	Earth pressures on a vertical wall, horizontal backfill, above the water table	1
7.2	Earth pressure considering the water table on a vertical wall	3
7.3	Retaining wall with horizontal backfill; overturning stability and sliding	123
	stability	5
7.4	Wall stability without a buttress and with an inclined backfill	13
7.5	Comparison of lateral forces on a vertical wall with horizontal backfill and	
	different assumptions (Boussinesq equilibrium and graphical method of	1 -
= 0	Culmann).	15
7.6	Detecting errors made in the design of failing retaining structures (ruptures,	16
	collapses, etc.) of reinforced concrete or masonry	10
7.7		18
7.8	Uniformly loaded backfill	TC
1.0	retaining wall	19
7.9	Analysis of the failure of a reinforced concrete retaining-wall. Corrective	**
1.5	measure by using rock anchors	24
7.10	Design of a reinforced-earth retaining-wall with horizontal backfill	30
7.11	Design of a reinforced earth retaining-wall with a reinforced concrete skin	00
1.11	and a slope, surcharged backfill	37
	www.w.v.b.v.	50
2007/06/2017	ter 8. Sheetpile Walls	
8.1	Design of a sheetpile wall. Comparison of two design methods: the classical	
	method of plasticity, and the design by elasto-plasticity	43
8.2	Design of an anchor system	53
8.3	Design of a sheetpile wall with anchors by the Blum method	58
8.4	Design of an anchored sheetpile wall by the method of Tschebotarioff	63
8.5	Design of fender piles	66
8.6	Uplift of an excavation bottom	92
Chap	ter 9. Slurry Walls	
9.1	Slurry wall stability during construction	103
9.2	Design of a slurry wall with pre-stressed anchors	
9.3	Self-sustaining slurry wall	
9.4	Wall buttressed by floors	
224		
	ter 10. Shallow Footings	0.2020
	Allowable bearing capacity of a strip footing on sand	
	Evaluation of the bearing capacity factor N_{γ}	
	Bearing capacity of a strip footing embedded in sand	
10.4	Bearing capacity of a strip footing embedded in a cohesive soil	125

/III	CONTENTS
------	----------

10.5	Bearing capacity of a square footing on a cohesionless or cohesive soil	126	
10.6	Comparison of footings and mat foundation.	126	
10.7	Comparison of settlements of a footing and of a mat supporting a building	131	
10.0	over a two-layer system	134	
10.8	Elastic and plastic equilibrium in a soil under a strip footing	135	
10.9 10.10	Design of a shallow footing based on laboratory test results	147	
10.10	Shallow footings on a two-layer system	151	
10.12	Circular mat design for the support of a stack (shallow footing with an		
10.12	eccentric, inclined load by the method of Tran Vo Nhiem)	153	
10.13	Design of footings on swelling clay. Evaluation of swelling pressures and		
	computations of possible differential uplifts	155	
10.14	Evaluation of the bearing capacity and settlement of a shallow footing on a		
	cohesive soil from results of a pressuremeter test	164	
10.15	Evaluation of bearing capacity and settlement of a shallow footing on a		
	cohesionless soil from results of a pressuremeter test	166	
10.16	Bearing capacity and settlement calculations of a mat foundation on a two-		
	layered system from pressuremeter test results	169	
10.17	Bearing capacity of shallow foundations from static penetrometer tests	172	
100m5040 F 100	5 50 95 500 120 120 12 000		
	er 11. Deep Foundations		
11.1	Design of a driven pile in homogeneous sand from static penetrometer	173	
11.0	test data	110	
11.2	test data	174	
11.3	Design of drilled piles from static penetrometer test data (Andina penetro-	111	
11.3	meter)	176	
11.4	Design of a pile driven into a three soil layer system from static penetro-		
11.4	meter test data	179	
11.5	Design of a driven pile on the basis of static formulae	179	
11.6	Allowable bearing capacity of a pile from pressuremeter test results	184	
11.7	Design of a pile and pier drilled into a swelling clay	187	
11.8	Enlarged base pile design in a swelling clay	190	
11.9	Calculation of the bearing capacity of a pile from the S.P.T. (Standard		
	Penetration Test)	194	
11.10			
	penetration tests and S.P.T. Comparison with in situ pile load test	194	
11.11	Determination of bearing capacity and settlements estimates of semi-deep	000	
	foundations based on pressuremeter tests	202	
01 1	10 Classes and Dame		
	er 12. Slopes and Dams Failure of a vertical cut	207	
$12.1 \\ 12.2$	Plane failure	210	
12.2 12.3	Dam stability (global method)	212	
12.3 12.4	Dam stability (method of slices)	219	
12.5	Stability of a dam with impervious core. Comparison of results from		
12.0	computer calculation and slice method	221	
12.6	Design of a retaining-wall on unstable slope	226	
12.7	Embankment stability on a compressible soil	238	
Bibliography			
Index			
muex	i esa esa ese e coe esa esa esasea esa esa esa esa esa esa	249	