CONTENTS

PREFACE

I. BASICS OF ROCK FRACTURE MECHANICS
 (R.A. Schmidt - H.P. Rossmanith)

1. Introduction
2. Linear Elastic Fracture Mechanics (LEFM)
 2.1. The Stress Intensity Factor
 2.2. Fracture Criteria
 2.3. Fracture Toughness
 2.4. Crack Tip Zone of Micro-Cracking in Rock
 2.5. Subcritical Crack Growth
3. Development of Fracture Toughness Testing
 3.1. CT-Specimen and 3PB-Specimen Testing
 3.2. Anisotropy
 3.3. Effects of Hydrostatic Compression
4. Closure
5. References

II. ANALYSIS OF CRACKS RELATED TO ROCK FRAGMENTATION
 (F. Ochterlony)

1. Introduction to Blasting Configurations
2. Idealized Crack Systems
3. Complex Representation and Conformal Mapping
 3.1. Method
 3.2. Results
 3.3. Formal Approach to Uniform Growth
4. Path-Independent Integrals
 4.1. Method
 4.2. Results and Applications
5. References
III. FRACTURE TOUGHNESS TESTING OF ROCK
(F. Ouchterlony)

1. Review of Toughness Testing
 1.1. On Specimen Geometries
 1.2. Specific Work of Fracture
 1.3. Griffith's Balance of Energy Rates
 1.4. Fracture Toughness
 1.4.1. Validity of Metals Testing Criteria
 1.4.2. Other Aspects
 1.5. J-Integral Resistance
 1.5.1. Applicability of J_{IC} Test Practice for Metals to Rock
 1.5.2. J_{IC} Measurements on Rock
 1.6. Anisotropy Effects
 1.6.1. Material Description
 1.6.2. Crack Growth Resistance Values
 1.7. Conclusions

2. Development of Core Bend Specimens
 2.1. Single-Edge-Crack-Round-Bar in Bending (SECRBB)
 2.1.1. Experimental Procedure
 2.1.2. Results
 2.1.3. Further Fracture Mechanics Formulas
 2.2. Chevron-Edge-Notch-Round-Bar in Bending (CENRBB)

3. Crack Resistance Measurements on Core Specimens
 3.1. Simple R-Curve Approach to SECRBB Testing
 3.1.1. Prediction Formulas
 3.1.2. Energy Rate Crack Resistance Data
 3.1.3. Conclusions
 3.2. Direct R-Curve Measurements on SECRBB Specimens
 3.2.1. R-Curves from Complete Failure Curves
 3.2.2. R-Curves from Sub-Critical Failure Cycles
 3.2.3. Conclusions
 3.3. Conclusions from Core Toughness Data

4. References

IV. NUMERICAL MODELLING OF FRACTURE PROPAGATION
(A.R. Ingraffea)

1. Introduction
2. The Nature of Fracture Propagation in Rock
3. Stress Intensity Factor Computation
 3.1. A Historical Overview
 3.2. Computation by Finite Element Method
 3.3. Computation by Boundary Element Method
4. Theories of Mixed-Mode Fracture
 4.1. The $\sigma_{\theta,\text{max}}$-Theory 174
 4.2. The $S(\theta)_{\text{min}}$-Theory 179
 4.3. Comparison of Mixed-Mode Fracture Theories 181
 4.4. Predicting Crack Increment Length 183

5. Fracture Propagation Programs
 5.1. Numerical Methods 189
 5.2. User-Computer Interface 190
 5.3. Automatic Remeshing 191
 5.4. Example Solutions 192

6. Fracture Propagation Modelling - The Future 199

7. References 204

V. DYNAMIC PHOTOELASTICITY AND HOLOGRAPHY APPLIED TO CRACK AND WAVE PROPAGATION 209
(H.P. Rossmanith - W.L. Fournier)

1. Photoelasticity 210

2. High-Speed Photography and Requirements of an Optimum Photographic System in Dynamic Photoelasticiy 213
 2.1. Cranz-Schardin Camera 215

3. Dynamic Holography 217

4. Applications 220
 4.1. Wave Propagation 220
 4.2. Fracture Mechanics 222
 4.3. Crack-Wave Interaction 222

5. References 227

VI. ELASTIC WAVE PROPAGATION 229
(H.P. Rossmanith)

1. Waves in Unbounded Media 229
 1.1. Plane Waves 229
 1.2. Spherical and Cylindrical Waves 232
 1.2.1. Spherical Waves 233
 1.2.2. Cylindrical Waves 233
 1.3. Superposition of Elastic Waves 233

2. Boundary Effects 234
 2.1. Cohesive Joints 234
 2.2. Loose Joints 238
 2.3. Plate Waves 240
2.4. Surface Waves
 2.4.1. Glancing Angle Diffraction
 2.4.2. Rayleigh-Waves
 2.4.3. P-Wave Propagation in Layers

2.5. Nonplanar Wave Fronts at Boundaries and Interfaces

3. Dynamic Layer Detachment and Spallation

References

VII. ANALYSIS OF DYNAMIC PHOTOELASTIC FRINGE PATTERNS
 (H.P. Rossmanith)

1. Identification of Isochromatic Fringes

2. Data Analysis
 2.1. Boundary Conditions
 2.2. Wave Form Conditions

3. Fracture Analysis Using Photoelastic Data
 3.1. Mixed-Mode Fracture Problem
 3.2. A Multiparameter Approach

4. Crack Speed versus Stress Intensity Factor Characterization of Dynamic Fracture

5. References

VIII. DYNAMIC CRACK ANALYSIS AND THE INTERACTION BETWEEN CRACKS AND WAVES
 (H.P. Rossmanith)

1. The Moving Crack
 1.1. Discontinuous Change of Crack Speed

2. Crack-Wave Interaction
 2.1. Cracks Subjected to Stress Wave Loading
 2.1.1. Diffraction by a Stationary Crack
 2.1.2. Crack Extension Following Wave Diffraction
 2.2. Photoelastic Investigation of Crack-Wave Interaction

3. Interface Cracks and Joints

4. References
IX. Fracture Control Blasting
(W.L. Fourney)

1. Introduction
 1.1. Effect of Notches in a Borehole
 1.2. Control of Crack Initiation
2. Photoelastic Studies of Fracture Control
3. References

X. Fragmentation Studies with Small Flaws
(W.L. Fourney)

1. Introduction
2. Fragmentation of a Homogeneous Model
3. Effects of Small Flaws
4. Summary
5. References

XI. Fragmentation Studies with Large Flaws
(W.L. Fourney)

1. Introduction
2. Joint Initiated Fracture
3. Time Delays Between Boreholes
4. References

XII. Gas Well Stimulation Studies
(W.L. Fourney)

1. Introduction
2. Growth of Fractures from a Wellbore and Gas Flow into them
 2.1. Effect of Loading Rate
 2.2. Stem Induced Fracture
3. References
XIII. GROUND VIBRATION STUDIES
(W.L. Fournery)

1. Introduction 371
2. Theory 373
3. Results 375
4. Conclusion 380
5. References 381

XIV. MODELLING AND DEVELOPMENT OF HYDRAULIC FRACTURING TECHNOLOGY
(M.P. Cleary)

Summary 383

Introduction 384

1. Potential and Status of Fracturing Technology 391
 1.1. Mechanisms of Fracture Creation in Rock 391
 1.2. General Equations Governing Hydraulic Fracturing 394
 1.3. Models of Fracture Processes, Existing Potential Technology
 1.3.1. Modelling 400
 1.3.2. Field Technology 401

2. First-Order Models and Design of Hydraulic Fractures 405
 2.1. Mathematical Models
 2.1.1. Equations Governing Lumped P3DH-Type Models 405
 2.1.2. Algebraic Solutions of Lumped Model Equations 411
 2.1.3. Numerical Solutions of Lumped Model Equations 416
 2.2. Summary of P3DH-Model Equations and Results 416
 2.2.1. Reduction of P3DH-Model to Ordinary Differential Equations 422
 2.2.2. Self-Similar Approximations for Storage in Lateral Flow 425
 2.2.3. Hybridisation of Self-Similar and O.D.E. Models 428
 2.3. Hydrafrac Designs Based on Lumped Model Solutions 430

3. Detailed Theoretical Modelling Hydrafrac 439
 3.1. Complete Simulation for a Representative Cross Section 440
 3.2. Development of a Reference Circular Hydrafrac Model 440
 3.3. Modelling of Multiple Fractures, Interaction with Reservoir Conditions of Stress, Pore Pressure and Material Variations 443
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.3. Modelling of Multiple Fractures, Interaction with Reservoir</td>
<td>443</td>
</tr>
<tr>
<td>Conditions of Stress, Pore Pressure and Material Variations</td>
<td></td>
</tr>
<tr>
<td>3.4. Fracture Impedance Mechanisms, Branching and Slipping</td>
<td>445</td>
</tr>
<tr>
<td>3.5. Fully Three-Dimensional Simulation of Fracturing</td>
<td>445</td>
</tr>
<tr>
<td>4. Laboratory Simulation of Fracturing</td>
<td>448</td>
</tr>
<tr>
<td>4.1. Interface Separation Apparatus, DISLASH</td>
<td>449</td>
</tr>
<tr>
<td>4.2. Apparatus for Full 3-D-Fracture Growth and Interaction</td>
<td>454</td>
</tr>
<tr>
<td>4.3. Development of Data Acquisition and Control Systems</td>
<td>459</td>
</tr>
<tr>
<td>4.4. Monitoring of Fracture Growth in the Laboratory</td>
<td>460</td>
</tr>
<tr>
<td>4.5. Some Studies on Fluid Rheology</td>
<td>462</td>
</tr>
<tr>
<td>5. Laboratory Testing of Material Response</td>
<td>463</td>
</tr>
<tr>
<td>5.1. High Temperature Triaxial Test System</td>
<td>464</td>
</tr>
<tr>
<td>5.2. Permeability, PPIC, and High Pressure Triaxial Test Systems</td>
<td>466</td>
</tr>
</tbody>
</table>

List of References 467

AUTHOR INDEX 477

SUBJECT INDEX 481