PROCEEDINGS OF THE FIFTH INTERNATIONAL SYMPOSIUM ON GROUND FREEZING / NOTTINGHAM / 26-28 JULY 1988

Ground Freezing 88

Edited by
R.H.JONES & J.T.HOLDEN
University of Nottingham, UK

VOLUME ONE

BIBLIOTECA .

Contents

Preface	IX
1. Heat and mass transfer	
State of the art: Heat and mass transfer in freezing soils B.D.Kay & E.Perfect	3
Evaluation of the X-ray radiography efficiency for heaving and consolidation observation Satoshi Akagawa	23
Salt redistribution during laboratory freezing of saline sand columns G.C.Baker & T.E.Osterkamp	29
On salt heave of saline soil X.B.Chen, G.Q.Qiu, Y.Q.Wang & W.K.Shen	35
On a model for quasi-steady freezing processes of saturated porous media E.Comparini	41
Influence of freezing and thawing on the physical and chemical properties of swelling clays K.A.Czurda & R.Schababerle	51
Field observations of water migration in unsaturated freezing soils with different ground water tables Gao Weiyue & Xu Xiaozu	59
Experimental study of frost heaving of a saturated soil Takeshi Ishizaki & Nobuaki Nishio	65
A finite element simulation of frost heave in soils Roland W.Lewis & Wah K.Sze	73
Thermal and hydraulic conductivity of unsaturated frozen sands W.K.P.van Loon, I.A.van Haneghem & H.P.A.Boshoven	.81
A frost heave mechanism model based on energy equilibrium Y.Miyata	91
Sensitivity of a thaw simulation to model parameters Sorab Panday & M.Yayuz Corapcioelu	99

Investigations of the frost heave of colliery spoil Maria Porębska & Krystyna M.Skarżyńska	107
Frost expansion pressure and displacement of saturated soil analyzed with coupled heat and water flows Kimitoshi Ryokai, Fujio Tuchiya & Masataka Mochizuki	115
Calculation of the stress field in soils during freezing M.Shen & B.Ladanyi	121
The effect of surcharge on the frost heaving of shallow foundations Tong Changjiang & Yu Chongyun	129
Thermal characteristics of fine-grained soils E.D.Yershov, I.A.Komarov, N.N.Smirnova, R.G.Motenko & Ye.N.Barkovskaya	135
2. Mechanical properties	
State of the art: Mechanical properties of frozen soil Francis H.Sayles	143
Cyclic thermal strain and crack formation in frozen soils Orlando B.Andersland & Hassan M.Al-Moussawi	167
Mechanical characteristics of artificially frozen clays under triaxial stress condition Chen Xiangsheng	173
Direct shear test at a frozen/unfrozen interface S.Goto, K.Minegishi & M.Tanaka	181
Mechanical properties of circular slabs of frozen sand and clay in bending tests H.Izuta, H.Yamamoto & T.Ohrai	187
On the regularities of the change of shear strength of soils with thawing and dynamic loadings V.D.Karlov & S.V.Arefyev	193
Acoustic properties of frozen near-shore sediments, southern Beaufort Sea, Arctic Canada P.J.Kurfurst & S.E.Pullan	197
A creep formula for practical application based on crystal mechanics Wolfgang Orth	205
Laboratory determination of pore pressure during thawing of three different types of soil C.G.Rydén & K.Axelsson	213
Soil freezing and thaw consolidation results for a major project in Helsinki I.T.Vähäaho	219
Uniaxial compressive strength of frozen medium sand under constant deformation rates Zhu Yuanlin, Zhang Jiayi & Shen Zhongyan	225

3. Engineering design

State of the art: Engineering design of shafts J.Klein	235
State of the art: Tunnelling using artificially frozen ground J.S.Harris	245
Design and installation of deep shaft linings in ground temporarily stabilized by freezing Part 1: Shaft lining deformation characteristics F.A.Auld	255
Design and installation of deep shaft linings in ground temporarily stabilized by freezing Part 2: Shaft lining and freeze wall deformation compatibility <i>F.A.Auld</i>	263
Ground freezing with liquid nitrogen P.Capitaine & D.Rebhan	273
Effect of frozen soil creep on stresses at the moving thaw front around a wellbore <i>P.Huneault</i> , <i>B.Ladanyi & L.N.Zhu</i>	279
Tunnel displacements under freezing and thawing conditions H.Meißner	285
Some results of in-situ measurement of freezing pressure and earth pressure in frozen shafts $SuLifan$	295
The cause and prevention of freezetube breakage Wang Zhengting	303
Structure and stress analysis of seepage resistant linings in shafts sunk with the freezing method Xu Xiang & Wang Changsheng 4. Case histories	311
Vienna Subway construction – Use of brine freezing in combination with NATM under compressed air Franz Deix & Bernd Braun	321
The comparison between the results of heat transfer analysis and the observed values on a refrigerated LPG inground tank Sadao Goto, Masafumi Shibuya, Takashi Nakajima & Masanobu Kuroda	331
Construction of the Asfordby mine shafts through the Bunter Sandstone by use of ground freezing S.J.Harvey & C.J.H.Martin	339
Thermal design of a frozen soil structure for stabilization of the soil on top of two parallel metro tunnels H.L.Jessberger, Regine Jagow & Peter Jordan	349

Freezing a temporary roadway for transport of a 3000 ton dragline Derek Maishman, J.P.Powers & V.J.Lunardini	357
Ground freezing in non-saturated soil conditions using liquid nitrogen (LN) L.V.Martak	367
Ground freezing for the construction of a drain pump chamber in gravel between the twin tunnels in Kyoto S.Murayama, T.Kunieda, T.Sato, K.Miyamoto, T.Hashimoto & K.Goto	377
Application of the freezing method to the undersea connection of a large diameter shield tunnel K.Numazawa, M.Tanaka & N.Hanawa	383
Two practical applications of soil freezing by liquid nitrogen Wolfgang Orth	389
Ground freezing solves a tunnelling problem at Agri Sauro, Potenza, Italy A.Balossi Restelli, G.Tonoli & A.Volpe	395
Author index	403
Keyword index	405