ROCK MECHANICS DESIGN
IN MINING
AND TUNNELING

Z.T. BIENIAWSKI
Professor of Mineral Engineering and Director
Mining and Mineral Resources Research Institute
The Pennsylvania State University

A.A. BALKEMA / ROTTERDAM / BOSTON / 1984
Contents

PREFACE

1 INTRODUCTION

- Rock mechanics applications
- Sources of information
- References

2 HISTORICAL PERSPECTIVE

- Ancient mining and tunneling
- Middle Ages
- Modern times
- References

3 THE DESIGN PROCESS IN ENGINEERING

- Design stages
- Ethics and professionalism in design
- References

4 DESIGN APPROACHES FOR EXCAVATIONS IN ROCK

- Design methods in mining and civil engineering
- Contracting and project management
- References

5 INPUT PARAMETERS FOR DESIGN

- Geological site characterization
- Ground stresses
- Strength and deformability of rock masses
- Integral approach to site characterization of rock masses
- Summary of parameters for input data collection
- References

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>PREFACE</td>
<td>v</td>
</tr>
<tr>
<td>1 INTRODUCTION</td>
<td>1</td>
</tr>
<tr>
<td>Rock mechanics applications</td>
<td>1</td>
</tr>
<tr>
<td>Sources of information</td>
<td>3</td>
</tr>
<tr>
<td>References</td>
<td>4</td>
</tr>
<tr>
<td>2 HISTORICAL PERSPECTIVE</td>
<td>5</td>
</tr>
<tr>
<td>Ancient mining and tunneling</td>
<td>5</td>
</tr>
<tr>
<td>Middle Ages</td>
<td>8</td>
</tr>
<tr>
<td>Modern times</td>
<td>10</td>
</tr>
<tr>
<td>References</td>
<td>22</td>
</tr>
<tr>
<td>3 THE DESIGN PROCESS IN ENGINEERING</td>
<td>25</td>
</tr>
<tr>
<td>Design stages</td>
<td>27</td>
</tr>
<tr>
<td>Ethics and professionalism in design</td>
<td>29</td>
</tr>
<tr>
<td>References</td>
<td>30</td>
</tr>
<tr>
<td>4 DESIGN APPROACHES FOR EXCAVATIONS IN ROCK</td>
<td>33</td>
</tr>
<tr>
<td>Design methods in mining and civil engineering</td>
<td>34</td>
</tr>
<tr>
<td>Contracting and project management</td>
<td>45</td>
</tr>
<tr>
<td>References</td>
<td>51</td>
</tr>
<tr>
<td>5 INPUT PARAMETERS FOR DESIGN</td>
<td>55</td>
</tr>
<tr>
<td>Geological site characterization</td>
<td>56</td>
</tr>
<tr>
<td>Ground stresses</td>
<td>69</td>
</tr>
<tr>
<td>Strength and deformability of rock masses</td>
<td>71</td>
</tr>
<tr>
<td>Integral approach to site characterization of rock masses</td>
<td>85</td>
</tr>
<tr>
<td>Summary of parameters for input data collection</td>
<td>86</td>
</tr>
<tr>
<td>References</td>
<td>92</td>
</tr>
</tbody>
</table>
6 EMPRICAL METHODS OF DESIGN
Classification systems in rock engineering 97
Terzaghi's rock load classification 101
Laufler-Pacher classification 104
Deere's Rock Quality Designation 104
RSR (Rock Structure Rating) concept 105
Geomechanics Classification (RMR system) 112
Q-system 121
Guide to classification procedures 126
Recent developments 128
References 132

7 OBSERVATIONAL METHODS OF DESIGN
Rock monitoring techniques 137
The New Austrian Tunneling Method 152
The convergence-confinement method 154
References 155

8 ANALYTICAL METHODS OF DESIGN
Numerical modeling 159
Physical modeling 164
Failure criteria 168
Validation of analytical modeling 174
References 180

9 INTEGRATED DESIGNS
The Strata Control System for German coal mining (System zur Gebirgsbeherrschung) 183
Design of mine pillars 187
Comparisons of pillar strength formulae 205
Integrated design procedure 209
References 214

10 GUIDED DESIGN
General considerations for support design 217
Roof support design in civil engineering tunneling 219
Roof support design in hard rock (metal) mining 233
Roof support design in coal mining 250
References 267

AUTHOR INDEX 269

SUBJECT INDEX 271