Rock Rheology

N. Cristescu

Department of Mechanics University of Bucharest Romania

Kluwer Academic Publishers

Dordrecht / Boston / London

Contents

Preface	ix
Chapter 1. Introduction	1
Chapter 2. Mechanical Properties of Rocks	5
2.1. Diagnostic tests	5
2.2. Unconfined uniaxial compressive tests	6
2.3. Other mechanical tests	10
2.4. Triaxial tests	12
Exercises	16
Chapter 3. Creep of Rocks	17
3.1. History of creep tests	17
3.2. Uniaxial creep	17
3.3. Mathematical model	19
3.4. Examples	22
3.5. Creep in triaxial stress-state	23
Exercises	25
Chapter 4. Volume Deformation	27
4.1. Dilatancy and/or compressibility	27
4.2. Volume compressibility	29
4.3. Mathematical models for the hydrostatic compressibility of	
volume	33
4.4. Volume dilatancy	40
4.5. Rock dilatancy during creep	45
Exercises	47
Chapter 5. Classical Constitutive Equations	49
5.1. The linear elastic model	49
5.2. Plane strain elasticity in cylindrical coordinates	58
5.3. Thick-walled tube subjected to internal and external pressures	63

	٠	

5.4. The general linear viscoelastic model	66
Exercises	70
Chapter 6. Rock 'Elasticity' at High Pressures	78
6.1. The elastic moduli	78
6.2. Determination of elastic moduli by dynamic procedures	80
6.3. Longitudinal and shear waves in the case of high stresses and	
finite strains	8:
6.4. Restrictions concerning the elastic parameters	88
Exercises	9
Chapter 7. Rock Plasticity	93
7.1. Historical outline	9:
7.2. Constitutive hypotheses	9:
7.3. Constitutive equation	98
7.4. Yield function and plastic potential	100
7.5. Example for a dilatant rock	104
7.6. Example of compressible/dilatant rock	10:
7.7. Generalization of the model for finite rotations	110
Exercises	11
Chapter 8. Elastic/Viscoplastic Constitutive Equations	112
8.1. General considerations	112
8.2. Experimental foundation	11:
8.3. Constitutive hypotheses	118
8.4. Constitutive equations	120
8.5. An example for a compressible/dilatant hard rock	120
8.6. Examples for softer rocks	135
8.7. A uniaxial example	14
8.8. Acoustic emission	14:
Exercises	150
Chapter 9. Damage and Failure of Rocks	15
9.1. Classical short-time failure-strength criteria	151
9.2. Some experimental evidence	152
9.3. The energetic damage parameter	157
9.4. Numerical examples	161
Exercises	165
Chapter 10. Stress states In-Situ	166
10.1. Primary stress-state	166
10.2. Secondary and relative stress fields	170
10.3. Initial stresses and strains for the linear elastic model	171
10.4. Primary states for the elasto-plastic constitutive equation	172
10.5. Primary states for the linear viscoelastic model	173
10.6. Primary states for the elastic/viscoplastic model	174

Contanto	vii
Contents	VII

10.7.	Stresses and strains around underground openings	175
Exercis	es	176
Chapte	r 11. Creep and Dilatancy/Compressibility of Rocks Around	
	Vertical Shafts and Oil Wells	177
11.1.	Formulation of the problem	177
11.2.	The linear elastic solution	178
11.3.	The linear viscoelastic rock	182
11.4.	The elastic/viscoplastic rock	184
	Dilatancy/compressibility and damage around a well	191
	A more general primary stress-state	194
Exercis		198
Chapte	r 12. Creep and Dilatancy/Compressibility of Rocks Around	
	Horizontal Tunnels	199
12.1.	Formulation of the problem	199
	The elastic approach	202
	Creep around a tunnel according to a linear viscoelastic model	208
	Creep according to an elastic/viscoplastic model	217
	Creep, dilatancy/compressibility, damage, and failure around a	21,
12.0.	tunnel	221
Exercis		232
	T	
Chapte	r 13. Tunnel Support Analysis	234
	Formulation of the problem	234
	Linear elastic support; linear viscoelastic rock	236
	Non-linear self-adjusting supports; linear viscoelastic rock	242
	Non-linear self-adjusting support; elastic/viscoplastic rock	253
Exercis		268
Annend	lix 1. A Short Introduction to Fracture Mechanics	269
A1.1.	Introduction	269
A1.2.	The fundamental relations of the plane theory of elasticity	269
A1.3.	Integral representation of the functions $\Phi(z)$ and $\Psi(z)$	273
A1.4.	The main boundary-value problems	275
A1.5.	The influence functions corresponding to the elementary crack	277
A1.6.	The Griffith crack in the plane problem	280
A1.7.	Stress intensity factors and criteria for the propagation of the crack	
A1.8.		283
A1.9.	Systems of rectilinear cracks A polication to the grack kinking problem	285
A1.10.	Application to the crack kinking problem Some numerical and experimental results	287
A1.10.	some numerical and experimental results	289
Append	lix 2. Creep and Stress Variation Around a Well or a Tunnel. A Numerical Approach	292

References	299
Author Index	319
Subject Index	325

Creen unit france Variation Assend of Voglons a Leaned.

Contents

viii