RECOMMENDATIONS FOR THE DESIGN, CALCULATION, CONSTRUCTION AND MONITORING OF GROUND ANCHORAGES

Edited by P.HABIB

A.A.BALKEMA / ROTTERDAM / BROOKFIELD / 1989

Table of contents

Foreword to the first edition	XI
Foreword to the third edition	XIII
Members of the Working Group	XV
List of symbols	XVII

1 INTRODUCTION

1.1	Scope of the book	1
1.2	Importance of the problem and its topical interest	2
1.3	Nature of this volume	2
1.4	Importance of workmanship in ground anchorage construction	3
1.5	Contracting firms and their obligations	3
1.6	Methodology for ground anchorage design	3

2 DEFINITIONS

2.1	1 Definitions concerning the successive phases in the service life		
	of a ground anchorage	5	
2.2	Definitions concerning forces acting on ground anchorages	7	
	2.2.1 Limit load	7	
	2.2.2 Allowable load	7	
2.3	Definitions related to design characteristics of ground		
	anchorages	8	

3 MATERIALS SPECIFICATIONS

3.1	Steel	10
	3.1.1 Type of steels	10
	3.1.2 Allowable loads	11
	3.1.3 Important comment	12
3.2	Bonding cement	12
	3.2.1 General	12

VI Table of contents

	2.2 Choice of cement as a function of the aggressivity of	
	surrounding ground	12
	2.3 Choice of cement according to aggressivity to tendons	15
	2.4 Recapitulation of the choice of cement in relation to the	
	two preceding criteria	15
	2.5 Admixtures and additives	16
3.3	esins for bonding and protection from corrosion	16
	.3.1 Bonding resins	16
	.3.2 Resins for protection against corrosion	16

4 CORROSION PROTECTION OF GROUND ANCHORAGES

4.1	General	17
	4.1.1 Tendons	17
	4.1.2 Ordinary steels	17
	4.1.3 Prestressing steels	18
	4.1.4 Nomenclature of protection for the different parts of	
	anchorages	18
4.2	Parameters influencing the degree of corrosion protection	
	needed for prestressed anchorages	18
	4.2.1 Service life	18
	4.2.2 Type of environment	19
4.3	Corrosion protection of the free length of prestressed	
	anchorages	19
	4.3.1 Classification of corrosion protection	19
	4.3.2 Definition of Grade P0	20
	4.3.3 Definition of Grade P1	21
	4.3.4 Definition of Grade P2	21
4.4	Choice of corrosion protection for the free length	21
	4.4.1 Choice of protection grade	21
	4.4.2 Choice of the type of protection	22
	4.4.3 Choice between protection before and after stressing	23
4.5	Quality criteria required of corrosion protection along the	
	fixed anchor length	23
	4.5.1 General conditions	23
	4.5.2 Case 1: Grade P1 protection is required	24
	4.5.3 Case 2: Grade P2 protection is required	25
4.6	Protection of fixed anchorage length	26

	4.6.1 Requirements	26
	4.6.2 Grade P1 protection	26
	4.6.3 Grade P2 protection	27
4.7	Protection of the anchorage head and anchor-structure	
	connection	28
	4.7.1 General	28
	4.7.2 Principles of connection area corrosion protection	
	common to P1 and P2	29
	4.7.3 Additional specific provisions for P2 protection	30
4.8	Corrosion protection operations	31
	4.8.1 Timing	31
	4.8.2 Conditions of placing corrosion protection	31
4.9	Provisions specific to each system	33

5 CONSTRUCTION AND INSTALLATION OF GROUND ANCHORAGES

5.1	General	34
5.2	Drilling	34
5.3	Tendon installation	35
	5.3.1 Scope	35
5.4	Bonding the anchorage in the ground	35
	5.4.1 General	35
	5.4.2 Techniques excluding grouts or mortars	35
	5.4.3 Techniques using grouts and mortars	36
5.5	Stressing	36
	5.5.1 General	36
	5.5.2 Characteristic stressing loads	37
	5.5.3 Stressing equipment and device	41
	5.5.4 Application of proof test T	44
	5.5.5 Tendon lock-off and release of jack pressures	48
5.6	Release of tension in temporary anchorages	50

6 ANCHORAGE TESTING

6.1	Definitions, objectives and advisability of the various tests	52
	6.1.1 Various types of tests	52

	6.1.2	Objectives of the tests: General specifications	52
	6.1.3	Advisability of tests, obligations of the different	
		contracting parties (temporary and permanent	
		anchorages)	53
6.2	Prelir	ninary proving tests	56
		Aim of preliminary proving tests	56
		Re-use of test anchorages	56
		Number of test anchorages to be provided	56
	6.2.4	Date of testing	58
	6.2.5	Location of test anchorages	58
	6.2.6	Installation of test anchorages and any supporting	
		structure	58
	6.2.7	Equipment and apparatus for carrying out preliminary	
		proving tests	60
	6.2.8	Procedure for preliminary proving tests and	
		interpretation of results	62
6.3	On-si	te proving tests	74
	6.3.1	General	74
	6.3.2	Number of test anchors to be provided	74
	6.3.3	Date of testing	75
	6.3.4	Test equipment and installation	75
	6.3.5	Procedure for on-site proving tests	75
	6.3.6	Interpretation of results: Anchor acceptance criteria	76
6.4	Suital	bility tests	77
	6.4.1	General	77
	6.4.2	Number of test anchors	77
	6.4.3	Test equipment and installations	77
	6.4.4	Procedure for suitability tests	77
	6.4.5	Acceptance criteria of anchorages subjected to	
		suitability tests	78
6.5	Accep	ptance tests	78
	6.5.1	General	78
	6.5.2	Test method	79
	6.5.3	Duration of anchorage testing and measurement	
		intervals	81
	6.5.4	Acceptance criteria	82

7 PERIODIC MONITORING OF THE RESIDUAL LOAD

7.1	Advisability of monitoring the residual load	87
7.2	Procedure for monitoring permanent anchorages	87
	7.2.1 Liability for the monitoring	87
	7.2.2 Duration and frequency of the monitoring	87
	7.2.3 Monitoring system	88

8 RECOMMENDATIONS TO OWNERS

8.1	Introduction	90
8.2	Ground anchorage technology	90
8.3	Corrosion protection	91
8.4	Tests	91
8.5	Periodic long-term monitoring	91
8.6	Authorization for placing, dues	91
8.7	Specific structural provisions for anchored structures	92
8.8	Written data and technical specifications	92

APPENDIX 1: STABILITY OF RETAINING STRUCTURES

A1.1	Conditions of stability	94
A1.2	Equilibrium of an isolated wall	94
	A1.2.1 Horizontal components of force (Fig. A1.2)	94
	A1.2.2 Vertical components of forces (Figs. A1.3 and A1.4)	96
A1.3	Anchorage resistance	96
A1.4	Overall stability	97
	A1.4.1 Equilibrium of a mass with a single level of	
	anchorages	97
	A1.4.2 Equilibrium of a mass under the action of several	
	levels of anchorages 1	01
A1.5	Overall stability in surrounding soil 1	01

APPENDIX 2: VERIFICATION OF OVERALL STABILITY OF VERTICAL ANCHORAGES FOR RAFT CONSTRUCTION

A2.1	Method	1	102
	A2.1.1	Principle	102
	A2.1.2	Practical method	102
A2.2	Associa	ated unit volume (influence cone)	102
	A2.2.1	Real configuration	102
	A2.2.2	Practical volume in homogeneous soil	103
	A2.2.3	Practical volume in stratified soil	104
	A2.2.4	Practical volume in a homogeneous soil overload	en
		with a frictionless soil	105
	A2.2.5	Practical volume in a homogeneous soil under	
		a uniformly distributed excess load	105
	A2.2.6	Limit value of the half-angle at the top ß	105
A2.3	Reducti	ion of the influence volume	105
	A2.3.1	Principle	105
	A2.3.2	Reduction of F	105
	A2.3.3	Practical formula	106

APPENDIX 3: GUIDE TO PRELIMINARY DESIGN OF ANCHORAGES

A3.1	Reminder		108
A3.2	2 Tendon design		
A3.3	3 Calculation of the free length L,		
	Calculation of anchor length L		108
	A3.4.1 Statement of requirements		108
	A3.4.2 Non-slippage requirement		109
	A3.4.3 Methods of determining anchor length		109