

GEOTECHNICAL SPECIAL PUBLICATION NO. 124

GEOSUPPORT 2004 DRILLED SHAFTS, MICROPILING, DEEP

MIXING, REMEDIAL METHODS, AND SPECIALTY FOUNDATION SYSTEMS

PROCEEDINGS OF SESSIONS OF THE GEOSUPPORT CONFERENCE: INNOVATION AND COOPERATION IN THE GEO-INDUSTRY

January 29-31, 2004 Orlando, Florida

SPONSORED BY
International Association of Foundation Drilling (ADSC)
The Geo-Institute of the American Society of Civil Engineers

John P. Turner
Paul W. Mayne

Published by the American Society of Civil Engineers

Contents

Special Invited Papers

Drilled and Driven Foundation Behavior in a Calcareous Clay
Zen and the Art of Drilled Shaft Construction: The Pursuit of Quality Dan A. Brown
On the Axial Behavior of Drilled Foundations
Drilled Shafts 1: Design and Construction Case Histories 1
"Value Engineering?" During Construction
Drilled Shaft Construction with Blasting
Drilled Shaft Construction for the Bandra-Worli Sea Link Project
Capacity of Drilled Shafts for the Proposed Susquehanna River Bridge
Applications of a Simplified Dynamic Load Testing Method for Cast-in-Place Piles 1 Mohamad Hussein, Brent Robinson, and Garland Likins
Micropiles I: Micropiles in Anchored Geo-Support
Results of Lateral Load Tests on Micropiles
Effect of Micropiles on Seismic Shear Strain
Low Energy Compacted Concrete Grout Micropiles
Lateral Loads on Pin Piles (Micropiles)
Rock Socketed Micropiles
Sources of Uncertainty in Lateral Resistance of Slender Reinforcement Used for Slope Stabilization

Auger-Cast-in-Place and Drilled Displacement Piles

Multi-Method Strength Characterization for Soft Cretaceous Rocks in Texas199 Emin Cavusoglu, Moon S. Nam, Michael W. O'Neill, and Mark McClelland
Design, Monitoring, and Integrity Testing of Drilled Soil Displacement Piles (DSDP) for a Gas-Fired Power Plant
Residual Load Development in Augered Cast-in-Place (ACIP) Piles in a Bridge Foundation
Auger Pressure Grouted Displacement Piles: An Acceptable Deep Foundation Alternative
Drilled Shafts II: Design and Construction Case Histories 2
9-Foot (2.75m) Diameter Drilled Shafts at Cranston Viaduct: Design, Load Testing, and Construction
A Deep Foundation Surprise, Engineered Response, and Foundation Performance262 Clyde N. Baker, Jr., Tony A. Kiefer, William H. Walton, and Charles E. Anderson
Foundation Seismic Retrofit of Boeing Field Control Tower
Drilled Shaft Value Engineering Delivers Success to Wahoo, Nebraska Bridge289 Joseph A. Waxse, Jorj Osterberg, and Omar Qudus
Drilled Shafts III: Earth Retention Using Drilled Shafts
Secant Piles Support Access Shafts for Tunnel Crossing in Difficult Geologic Conditions
Design of Cantilever Soldier Pile Retaining Walls in Stiff Clays and Claystones309 Richard C. Sisson, Clint J. Harris, and Robert L. Mokwa
Design, Construction, and Performance of an Anchored Tangent Pile Wall for Excavation Support
Design of Drilled Shaft Cutoff Walls for Slope Stability in Marginal Soils

Ground Anchors for Infrastructure Repair

Stabilization of Retaining Wall Along Tailrace Channel of Hodenpyl Dam346 Jesús Gómez, Mary Ellen Bruce, Donald Bruce, Donald Basinger, and Allen Cadden
Post Grouted Single Bore Multiple Anchors at Hodenpyl Dam, Michigan361 M. E. Bruce, R. P. Traylor, A. D. Barley, D. A. Bruce, and J. Gomez
Wax Protection for Ground Anchors
Repair of Failing Mechanically Stabilized Earth (MSE) Railroad Bridge Abutment
Tom A. Armour, John Bickford, and Tom Pfister
Drilled Shafts IV: In Situ Testing for Design Parameters
Influence of Ground Water Table Fluctuation on Lateral Load Behavior of Rigid Drilled Shafts in Stiff Clay
Alan J. Lutenegger and Amy E. Dearth
Pilot Holes for Drilled Pier Foundations in Karst Conditions
Lateral Drilled Shaft Response from Dilatometer Tests
Axial Shaft Response from Seismic Piezocone Tests
Texas Cone Penetrometer-Pressuremeter Correlations for Soft Rock
Geotechnical Engineers, Wake Up—The Soil Exploration Process Needs Drastic Change
Jorj O. Osterberg
Stone Column and Rammed Aggregate Pier Foundations
Modulus Load Test Results for Rammed Aggregate Piers in Granular Soils460 Craig S. Shields, Brendan T. FitzPatrick, and Kord J. Wissmann
Ground Improvement Utilizing Vibro-Concrete Columns
Modeling of the Seismic Response of the Aggregate Pier Foundation System485 Christian H. Girsang, Marte S. Gutierrez, and Kord J. Wissmann
Compression and Uplift of Rammed Aggregate Piers in Clay
Lessons Learned from a Stone Column Test Program in Glacial Deposits508 Barry S. Chen and Michael J. Bailey

Deep Underground Construction

Development of Slurry Wall Technique and Slurry Wall Construction Equipment 520 Wolfgang G. Brunner
Construction of the Deep Cut-Off at the Walter F. George Dam530 Arturo Ressi di Cervia
Deep Underground Basements for Major Urban Building Construction545 Seth L. Pearlman, Michael P. Walker, and Marco D. Boscardin
Effectiveness of Toe-Grouting for Deep-Seated Bored Piles in Bangkok Subsoil561 Narong Thasnanipan, Zaw Zaw Aye, and Chanchai Submaneewong
Drilled Shafts V: Field Performance
Full Scale Field Performance of Drilled Shafts Constructed Utilizing Bentonite and Polymer Slurries
Osterberg Load Cell Test Results on Base Grouted Bored Piles in Bangladesh
Raymond J. Castelli and Ed Wilkins
Load-Settlement Characteristics of Drilled Shafts Reinforced by Rockbolts
Response and Analysis of a Large Diameter Drilled Shaft Subjected to Lateral Loading
Lateral or Torsional Failure Modes in Vertically Loaded Defective Pile Groups625 Linggang Kong and Liming Zhang
Performance Evaluation of Continuous Flight Auger (CFA) Vs. Bentonite Slurry Drilled Shafts Utilizing Drop Weight Testing
Micropiles II: Case Histories
Case History: Micropile Use for Temporary Excavation Support
High Capacity Micropiles for Utility Retrofit: A Case History at D. E. Karn Power Plant in Bay City, Michigan
Micropiles in Karstic Dolomite: Similarities and Differences of Two Case Histories
Special Use of Micropiles and Permanent Anchors

Bearing Capacity Improvement Using Micropiles: A Case Study
Foundation Underpinning with Mini-Piles: "A First" in Guyana, South America700 Richard P. Stulgis, Brock E. Barry, and Francis S. Harvey, Jr.
Soil Nailing for Geo-Support
Four Falls Corporate Center—A Case Study
Seismic Response and Extended Life Analysis of the Deepest Top-Down Soil Nail Wall in the United States
Design, Construction, and Performance of an 18-Meter Soil Nail Wall in Tucson, Arizona
Soil Nailing—Walls of Many Facades
Drilled Shafts VI: Analysis of Behavior
Side Resistance of Drilled Shaft Socketed into Wissahickon Mica Schist765 Michael Zhiqiang Yang, M. Zia Islam, Eric C. Drumm, and Gang Zuo
Numerical Analysis of Drilled Shaft O-Cell Testing in Mica Schist
Structural Damping Concept for Interpretation of Statnamic Pile Load Test Results
San-Shyan Lin, J. L. Hong, Wei F. Lee, and Y. H. Chang
Laterally Loaded Isolated Piles, Drilled Shafts, and Pile Groups Using the Strain Wedge Model
Mohamed Ashour, Gary Norris, and Patrick Pilling
Interface Stresses Between Soil and Large Diameter Drilled Shaft Under Lateral Loading
Deep Mixing Method I: Engineering Tools
International Perspectives on Quality Assessment of Deep Mixing
Non-Destructive Evaluation of Cement-Mixed Soil
Engineering Tools for Design of Embankments on Deep Mixed Foundation Systems

Grouting for Ground Improvement	
Jet Grouting Systems: Advantages and Disadvantages	875
Features and Results of a Jet-Grouting Trial Field in Very Soft Peaty Soils Tiziano Collatta, Andrea Frediani, and Vittorio Manassero	887
Grouting Repair of Seawall and Revetment, Dana Point Harbor, California Jeffrey Geraci and Frank Nonamaker	902
Jet-Grouting Performance in Tunneling Paolo Croce, Giuseppe Modoni, and Giacomo Russo	910
Ground Improvement Operations for the Construction of the "Via Gramsci Railway Underpass"	923
Pile-Bottom Grouting Technology for Bored Cast-in-Situ Pile Foundation Zhiguo Zhang, Tiejun Lu, Yucheng Zhao, Jingchun Wang, and Youdao Li	935
Deep Mixing Method II: Case Histories	
Evaluation of Deep-Seated Slope Stability of Embankments over Deep Mixed Foundations	
Deep Soil Mixing for Foundation Support of a Parking Garage Joseph Cavey, Lawrence F. Johnsen, and Jeffrey DiStasi	
Installation, Load-Testing, and Design of Geo-Jet Soil-Cement Piles Jonathan R. Craft	965
Controlled Modulus Columns (CMC) Foundation System for Embankment Support A Case History	
Shallow Foundations	
Slab Construction—30 Years Late	.993
Back Analyzed Parameters from Piled Foundations Founded on Tropical Porous Clay R. P. Cunha, J. E. Bezerra, H. H. Zhang, and J. C. Small	1003
Behavior of Square Footings on Single Reinforced Soil Fathi M. Abdrabbo, Khaled E. Gaaver, and Amr Z. Elwakil	

Geotechnical Engineering Education

Student Views of the Geo-Industry	
Indexes	
Subject Index1039)
Author Index	,