PUBLIC

WATER

SUPPLY:

Data, models and operational management

Dušan Obradović and Peter Lonsdale

CONTENTS

	Introduction	vii
	Acknowledgements	×
	Notation	×ii
	Important SI units	xiv
	Basic conversion factors	X
F	Data management systems in water supply	
1.1	Water supply at the millennium	j
1.2	Managing a water supply system	2
1.3	Data required for operational management	6
1.4	Data capturing system	17
1.5	Data management system	25
1.6	The dissemination of operational data	33
2	Analysis of operational data	36
2.1	The value of on-line data	36
2.2	Deciphering the message	56
2.3	The logic of data	62
2.4	Analysing the balance	79
2.5	The case for mathematical modelling	87
3	Modelling water supply system elements	92
3.1	Structure of a hydraulic model	92
3.2	Modelling real-life systems	94
3.3	Sources of water	98
3.4	Pipes and pipe networks	100
3.5	Service connections and public standpipes	112
3.6	Reservoirs	115
3.7	Pumping stations	123
3.8	Valves	150
4	Modelling of demand	167
4. I	Introduction	167
4.2	Definitions and terminology	167
4.3	Analysis of demand	170
4.4	Capturing, holding and converting data to information	180

4.5	Losses	204
4.6	Modelling demand	217
5	Mathematical methods applied in modelling	221
5.1	The principles of modelling	221
5.2	Computation of one steady state	228
5.3	Continuous simulation	252
5.4	Initial state	260
5.5	Choosing adequate software	261
6	Making a model	266
6.1	The general approach to model making	266
6.2	Practical advice on model building	268
6.3	Solving difficulties and some common errors	274
6.4	Recognising typical solutions	279
6.5	First simulation runs	297
6.6	Calibration of the model	301
7	Modelling and real-life problems	314
7.1	Simulation models as tools for design	314
7.2	Modelling and operational management	319
7.3	The use of models in a water company	323
7.4	Modelling energy and costs	331
7.5	Modernisation of control systems	345
7.6	Models and operational management – cases	
	from real life	351
7.7	Leads for beginners	356
App	pendices	
A	Standard interface formats - Rajko Cavor	358
	A.I Introduction	358
	A.2 Standard telemetry interface (STI)	358
	A.3 Standard logger interface (SLI)	360
	A.4 Standard geographical interface (SGI)	361
В	Friction loss formulae	371
	B.I Darcy-Weissbach	371
	B.2 Hazen-Williams	372
	B.3 Manning	374
C	Local (minor) loss coefficients	375
D	Pumps	377
	D.1 Specific consumption of energy	377

CONTENTS	vii

	D.2 Characteristics	37
	D.3 Electric motor speed	38
	D.4 Operational difficulties	38
E	Valve characteristics	383
F	Water consumption patterns	38
G	Manual computation - a test case:	
	three-loop system	420
Refe	erences	433
Glo	ssary	444
Inde	av .	45