THE DESIGN AND CONSTRUCTION OF ENGINEERING FOUNDATIONS

EDITED BY
The late F.D.C. Henry

BSc (Eng), PhD, FICE, FAmSocCE
FStructE, FIMutE, FGS

SECOND EDITION

London New York
CHAPMAN AND HALL
CONTENTS

Contributors

<table>
<thead>
<tr>
<th>Contributors</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>xvii</td>
<td></td>
</tr>
<tr>
<td>xix</td>
<td></td>
</tr>
</tbody>
</table>

Preface

<table>
<thead>
<tr>
<th>Site investigations and preliminary considerations</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.D.C. Henry</td>
</tr>
</tbody>
</table>

1. **Introduction**

1.1 **Geological considerations**

1.1.1 Chemical and physical stability of rocks

1.1.2 Structural geology in relation to engineering

1.1.3 Considerations relating to sedimentary rocks and stratigraphy

1.1.4 Rock mechanics

1.2 **Site investigations**

1.2.1 Field operations in site investigations

1.2.2 Description and classification of rocks and soils

1.2.3 Site investigation plans and maps

1.2.4 Site plate bearing tests

1.2.5 Field vane tests

1.2.6 Penetration or sounding tests

1.2.7 Pore-water pressure measurement

1.2.8 Pressuremeters

1.3 **Potentially corrosive environments for foundation materials**

1.4 **Special problems relating to particular site conditions**

1.4.1 Foundations on limestone

1.4.2 Collapsing and aggregated soils

1.4.3 Foundations on permafrost

1.4.4 Foundations on fill

1.4.5 Foundations on clays

1.4.6 Structures in the open sea

1.5 **Selection of foundation types**

1.5.1 Site conditions

1.5.2 Characteristics of superstructure

1.5.3 Methods of excavation and construction

1.5.4 Example of the selection of foundation types

1.6 **Philosophical observations on foundation engineering**
2 Deformation and groundwater problems in foundation engineering

F.D.C. Henry

2.1 Deformation characteristics of soils and rocks

2.2 Stresses in soils

2.2.1 Stresses beneath a point load

2.2.2 Calculation of stresses beneath distributed loads

2.2.3 Stress bulbs

2.3 Distribution of bearing stress

2.3.1 Observed and theoretical distributions of bearing stress

2.3.2 Linear distributions of bearing stress

2.4 Settlement of foundations on cohesive soils

2.4.1 Review of the problem of settlement and related laboratory tests

2.4.2 Immediate settlement

2.4.3 Consolidation settlement

2.4.4 Secondary settlement

2.4.5 Settlement progression

2.5 Settlement of foundations on cohesionless soils

2.5.1 The use of plate bearing tests for predicting settlement

2.5.2 The use of penetration tests for predicting settlement

2.6 The effect of settlement on superstructures

2.6.1 The general effects of settlement on superstructures

2.6.2 Classification of settlement effects

2.6.3 Methods of reducing differential settlement

2.6.4 Observations of settlement

2.7 Flow of water to excavations and boreholes

2.7.1 Permeability

2.7.2 Flow nets

2.7.3 Stability of the floor of an excavation under the influence of hydraulic pressure

2.7.4 Calculation of discharge of water to excavations and boreholes

3 Stability problems in foundation engineering

F.D.C. Henry

3.1 Failure characteristics of soils and rocks

3.1.1 General observations concerning failure of soils and rocks

3.1.2 Failure in cohesionless soils

3.1.3 Failure in cohesive soils

3.1.4 Anisotropy

3.1.5 Sensitivity

3.1.6 Organic content

3.1.7 Specimen size

3.2 Analysis of the stability of hillside banks

3.2.1 The classification of failures in hillside and banks of cohesive soils

3.2.2 Stability analyses

3.2.3 Assessment of the stability of slopes by stability number and stability coefficients

3.2.4 Stability of banks of cohesionless soil

3.2.5 The application of analytical techniques to the solution of practical problems

3.2.6 Preventive and remedial measures

3.3 Bearing capacity of soils

3.3.1 Characteristics of bearing failure of soils

3.3.2 Estimation of bearing capacity based on the rupture zone hypothesis

3.3.3 Bearing capacity of square and rectangular foundations

3.3.4 Bearing capacity of eccentrically loaded foundations

3.3.5 Bearing capacity of foundations subjected to inclined loads

3.3.6 The influence of groundwater on bearing capacity

3.3.7 Additional comments on bearing capacity

3.3.8 The bearing capacity of cohesive soil in the undrained state beneath an embankment

3.4 Local overstressing beneath foundations and the bearing capacity of foundations on a thin layer of cohesive soil

3.4.1 Overstressing in a thick bed of cohesive soil

3.4.2 The bearing capacity of a foundation on a thin layer of cohesive soil

3.5 The design of bored piers and piles

3.6 Bearing capacity of rock

3.7 The investigation of failures

3.7.1 Failure of banks and hillside banks

3.7.2 Failure of retaining walls

3.7.3 Bearing failures beneath foundations

4 Independent foundations

A.W. Astill

4.1 General notes

4.2 Transfer of load from column to footing

4.2.1 Reinforced concrete columns

4.2.2 Steel columns

4.3 Transfer of load from footing to soil
4.3.1 General details
4.3.2 Eccentricity about one axis
4.3.3 Footings loaded eccentrically in two directions
4.4 Design of reinforced concrete column footings
4.4.1 Axial loading
4.4.2 Eccentric loading
4.5 Plain concrete foundation blocks
4.6 Steel grillage design
4.6.1 Concrete encased grillages
4.6.2 Uncased grillages
4.6.3 Grillage loaded axially
4.6.4 Grillages loaded eccentrically along one axis
4.7 Construction of footings
4.7.1 General notes
4.7.2 Reinforced concrete
4.7.3 Steel grillages
4.8 Cantilever foundations
4.9 Steel column bases
4.9.1 General notes
4.9.2 Gusseted bases
4.9.3 Slab bases
4.10 Steel piling bases
4.11 Deep foundations
4.12 Foundations subjected to overturning moments and uplift
4.13 Machine foundations
4.13.1 General notes
4.13.2 Criteria for design
4.13.3 The reduction of vibration emanating from machine foundations
4.13.4 Theory of vibrations
4.13.5 Analysis of oscillating systems
5 Combined foundations
A.P.S Selvadurai
5.1 General considerations in the analysis of stability and settlement of combined foundations
5.1.1 Bearing capacity
5.1.2 Settlement
5.2 Idealized soil response for the interaction analysis of combined foundations
5.2.1 The Winkler model
5.2.2 The elastic solid model
5.2.3 Two-parameter models
5.2.4 Inclastic and time-dependent soil models
5.2.5 Determination of constants describing the elastic soil models
5.3 Continuous footings
5.3.1 Analysis of infinitely long beams
5.3.2 Three-dimensional effects in the infinite beam problem
5.3.3 Analysis of finite beams
5.3.4 Finite beams on a Winkler medium
5.3.5 Finite beams on a two-parameter elastic medium
5.3.6 Finite beams on an elastic solid medium
5.3.7 Design of continuous footings
5.4 Mat and raft foundations
5.4.1 Plate theories
5.4.2 The analysis of the infinite plate
5.4.3 The analysis of finite plate
5.4.4 Design of mat foundations
5.4.5 Design of raft foundations
5.5 Tank foundations
6 Earth retaining structures and culverts
K. Starzewski
Introduction
6.1 Evaluation of loads on earth retaining structures
6.1.1 The effect of stress 'at rest' and the concept of 'active' and 'passive' states of limiting equilibrium
6.1.2 Methods of evaluating loads on earth retaining structures due to the self weight of soil
6.1.3 Effects of movement and deformation of retaining structures on total thrust and stress distribution
6.1.4 Pore-water pressure and seepage effects (hydrostatic and hydrodynamic pressures)
6.1.5 Effects of surcharge loads
6.1.6 Influence of special effects
6.1.7 Physical and mechanical properties of soils
6.2 Design and construction of retaining walls
6.2.1 Stability and serviceability considerations
6.2.2 Mass (gravity) retaining walls
6.2.3 Reinforced concrete cantilever walls
6.2.4 Reinforced concrete counterfort walls
6.2.5 Reinforced concrete and mass retaining walls with relieving slabs
6.2.6 Precast reinforced concrete walls
6.2.7 Strutted excavations
6.2.8 Cantilever and anchored sheet pile walls
7 Cofferdams and caissons

1. Greeves

Contents

6.3 Lateral stresses on the lining of shafts
6.4 Design and construction of culverts
6.4.1 Determination of loads on culverts
6.4.2 Design of box section culverts

7 Cofferdams and caissons

1. Greeves

Introduction

7.1 General review of the type of foundation to be used in bad ground or underwater
7.1.1 Preliminary investigation
7.1.2 Choice of foundation
7.1.3 Cofferdams
7.1.4 Caissons
7.1.5 Cylinders
7.1.6 Monoliths

7.2 Types of cofferdam
7.2.1 Gravity types
7.2.2 Sheeted cofferdams
7.2.3 Cofferdams of rock-filled cribs
7.2.4 Cellular cofferdams
7.2.5 Construction of cofferdams
7.2.6 Work carried out in tidal waters

7.3 Design of cofferdams
7.3.1 General design considerations for cofferdams
7.3.2 Cofferdam of one row of sheeting internally braced
7.3.3 Circular cofferdams
7.3.4 Worked example of cofferdam of double row of sheeting
7.3.5 Cofferdam of double row of sheeting with filling (Fig. 7.20)
7.3.6 Cellular cofferdams

7.4 Sheet piles
7.4.1 Driving of sheet piles
7.4.2 Water jetting
7.4.3 Cofferdam closures
7.4.4 Circular cofferdams
7.4.5 Extraction of piles
7.4.6 Cutting sheet steel piles
7.4.7 Silent pile driving

7.5 Open and pneumatic caissons
7.6 Construction of cylinders, etc.
7.6.1 Cylinders on land
7.6.2 Cylinder sinking by well sinking methods
7.6.3 Cylinder sinking over water

7.6.4 Sealing of caissons
7.6.5 Bored foundations
7.6.6 The construction of monoliths
7.6.7 The diving bell

7.7 Underwater concreting
7.7.1 Concrete
7.7.2 Preparation to receive concrete
7.7.3 Reinforcement
7.7.4 Methods of placing concrete
7.7.5 Use of the diving bell for underwater concreting

7.8 The use of compressed air in excavation work
7.8.1 The effects of compression upon workmen
7.8.2 Use of compressed air plant in relation to ground conditions and safety

8 Bearing piles and piling

L.A. Rennie

Introduction

8.1 Types of pile
8.2 Displacement piles
8.2.1 Timber piles
8.2.2 Precast concrete piles
8.2.3 Prestressed concrete piles
8.2.4 Driven cast in place piles
8.2.5 Steel bearing piles
8.2.6 Driving plant and hammers
8.2.7 Pile driving by vibration
8.3 Replacement piles
8.3.1 Hand augered piles
8.3.2 Percussive bored piles
8.3.3 Auger bored piles

8.4 Bearing capacity and settlement of piles and pile groups
8.4.1 Bearing capacity of single piles
8.4.2 Dynamic methods of calculating bearing capacity using driving equations
8.4.3 Static methods of calculating bearing capacity
8.4.4 Settlement of single piles
8.4.5 Bearing capacity of pile groups
8.4.6 Laterally loaded piles and pile groups
8.4.7 Piles in fill and soft soils

8.5 Pile caps

8.6 Pile testing
8.6.1 Functions of a pile test
9 Structures liable to the effects of mining subsidence

G.S. Littlejohn

9.1 Mechanics of mining subsidence
9.1.1 History
9.1.2 Mining Methods
9.1.3 The subsidence diagram
9.1.4 Angle of draw
9.1.5 Critical area of extraction (area of influence)
9.1.6 Seam thickness (t)
9.1.7 Width of working (W)
9.1.8 Stowage
9.1.9 Depth of working (D)
9.1.10 Width/depth ratio (W/D)
9.1.11 Geology of the overburden
9.1.12 Old coal workings
9.1.13 Presence of faults
9.1.14 Estimation of subsidence
9.1.15 Strains and displacements
9.1.16 Travelling or dynamic movements
9.1.17 Slope
9.1.18 Inclined seams
9.1.19 The time factor
9.1.20 Conclusions

9.2 Surface damage
9.2.1 General aspects
9.2.2 Vertical settlements
9.2.3 Horizontal displacements

9.3 Mining precautions against the effects of subsidence
9.3.1 Sterilisation
9.3.2 Harmonious mining
9.3.3 Stowing

9.4 Structural precautions against the effects of subsidence
9.4.1 Design for vertical movements
9.4.2 Design for horizontal displacements

9.5 Monitoring foundation movements
9.5.1 Layout of monitoring stations
9.5.2 Field measurements
9.6 General conclusions

10 Bridge abutments and piers

W.J. Walley and J.A. Parkins

10.1 Preliminary considerations
10.1.1 General considerations
10.1.2 Special considerations relating to river bridges
10.1.3 Special considerations relating to road bridges
10.1.4 Aesthetic considerations
10.2 Scour at river bridges
10.3 Standard bridge loading
10.3.1 Forces common to all bridges
10.3.2 Highway bridge live loading
10.3.3 Footway and cycle track live loading
10.3.4 Railway bridge live loading
10.4 Abutments for simply supported bridge decks
10.4.1 General considerations
10.4.2 Mass concrete, brick and masonry abutments
10.4.3 Reinforced concrete cantilever abutments
10.4.4 Reinforced concrete counterfort abutments
10.4.5 Reinforced concrete strutted abutments
10.4.6 Reinforced concrete U-shaped and T-shaped abutments
10.4.7 Skeleton abutments and bank seats
10.4.8 Counterbalanced and cellular abutments
10.5 Abutments for portal frame and arch bridges
10.5.1 General considerations
10.5.2 Portal frame abutments
10.5.3 Arch abutments
10.6 Bridge piers
10.6.1 Types of piers
10.6.2 Design considerations
10.7 Abutments and piers for moveable bridges
10.8 Bridge bearings and articulation systems
10.8.1 Introduction
10.8.2 Bearing design and performance
10.9 Design example: Calculation of design moments and forces for a cantilever abutment
10.9.1 Basic specification
10.9.2 Loading (characteristic forces per metre width of abutment)
Contents

10.9.3 Choice of overall proportions 876
10.9.4 Adequacy of foundation 877
10.9.5 Determination of design moments and forces 878
10.9.6 Summary of design moments and shears 883

11 Miscellaneous foundation problems
K. Elson and D.A. Greenwood

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>885</td>
</tr>
<tr>
<td>11.1 De-watering</td>
<td>885</td>
</tr>
<tr>
<td>11.2 Drainage and preloading</td>
<td>889</td>
</tr>
<tr>
<td>11.3 Deep ground improvement by vibration and tamping</td>
<td>890</td>
</tr>
<tr>
<td>11.3.1 Vibratory systems</td>
<td>891</td>
</tr>
<tr>
<td>11.3.2 Soils responsive to vibratory compaction</td>
<td>895</td>
</tr>
<tr>
<td>11.3.3 Arrangement of vibratory compactions</td>
<td>897</td>
</tr>
<tr>
<td>11.3.4 Earthquake resistance</td>
<td>899</td>
</tr>
<tr>
<td>11.3.5 Design of gravel columns and sand piles in cohesive soils</td>
<td>899</td>
</tr>
<tr>
<td>11.3.6 Application in heterogeneous strata</td>
<td>907</td>
</tr>
<tr>
<td>11.3.7 Practical constraints</td>
<td>907</td>
</tr>
<tr>
<td>11.3.8 Quality control</td>
<td>908</td>
</tr>
<tr>
<td>11.3.9 Deep compaction by heavy tamping</td>
<td>909</td>
</tr>
<tr>
<td>11.3.10 Vibration nuisance and damage to structures</td>
<td>915</td>
</tr>
<tr>
<td>11.4 Grouting in geotechnics</td>
<td>916</td>
</tr>
<tr>
<td>11.4.1 Injection constraints</td>
<td>918</td>
</tr>
<tr>
<td>11.4.2 Site investigation</td>
<td>918</td>
</tr>
<tr>
<td>11.4.3 Technique of repetition</td>
<td>919</td>
</tr>
<tr>
<td>11.4.4 Grout holes and stages</td>
<td>921</td>
</tr>
<tr>
<td>11.4.5 Hydrofracture and permeation techniques</td>
<td>923</td>
</tr>
<tr>
<td>11.4.6 Effects of consolidation (bleed) of particulate gourts</td>
<td>926</td>
</tr>
<tr>
<td>11.4.7 Filtration</td>
<td>926</td>
</tr>
<tr>
<td>11.4.8 Permeation with chemical gours</td>
<td>927</td>
</tr>
<tr>
<td>11.4.9 Permeation limits</td>
<td>929</td>
</tr>
<tr>
<td>11.4.10 Hydrofracture</td>
<td>929</td>
</tr>
<tr>
<td>11.4.11 Squeeze grouting</td>
<td>931</td>
</tr>
<tr>
<td>11.4.12 Examples of grouting techniques</td>
<td>931</td>
</tr>
<tr>
<td>11.4.13 Hydraulic displacement after injection</td>
<td>933</td>
</tr>
<tr>
<td>11.4.14 Permanence of grout treatment</td>
<td>934</td>
</tr>
<tr>
<td>11.4.15 Toxic hazards</td>
<td>935</td>
</tr>
<tr>
<td>11.4.16 Structural design with grouted soils</td>
<td>935</td>
</tr>
<tr>
<td>11.4.17 Quality control tests</td>
<td>936</td>
</tr>
<tr>
<td>11.4.18 Grouting equipment</td>
<td>937</td>
</tr>
<tr>
<td>11.4.19 Mix-in-place methods</td>
<td>939</td>
</tr>
<tr>
<td>11.4.20 Grouting contract philosophy</td>
<td>940</td>
</tr>
<tr>
<td>11.5 Diaphragm walls</td>
<td>940</td>
</tr>
<tr>
<td>11.6 Ground anchors</td>
<td>946</td>
</tr>
</tbody>
</table>

- **Appendix**
 - The structural analysis of pile groups
 - F.D.C. Henry
 - A.1 Graphical analysis of pile groups
 - A.1.1 Hinged-ended piles
 - A.1.2 Fixed-ended piles
 - A.2 Numerical analysis of pile groups
 - A.2.1 Bending stiffness neglected
 - A.2.2 Bending stiffness included
 - References
 - Index

Page dimensions: 1224.0x844.2
Image dimensions: 0x0 to 1224x844
Page number: iv