An Introductory Guide to Valve Selection
Isolation, check, and diverter valves for the energy, process, oil, and gas industries

E. SMITH
and
B. E. VIVIAN

Series Editor
Roger C. Baker

Mechanical Engineering Publications Limited, London
CONTENTS

Series Editor's Foreword v
Authors' Preface xi
Acknowledgements xii
Origin xiii

Chapter 1 Basic Valve Types and Function 1
 1.1 Introduction 1
 1.2 Valve types 3

Chapter 2 Service Characteristics 8
 2.1 General 8
 2.2 Fluid characteristics 9
 2.3 Clean service 9
 2.4 Dirty service 10
 2.5 Abrasive service 10
 2.6 Sandy service 11
 2.7 Fouling service 11
 2.8 Slurry service 11
 2.9 Solids 12
 2.10 Hazardous service 12
 2.11 Flammable service 13
 2.12 Searching service 13
 2.13 Solidifying service 13
 2.14 Corrosive service 13
 2.15 Viscous service 14
 2.16 Vacuum service 14
 2.17 Fire hazard 15

Chapter 3 Valve Types for Isolation (Block) Duty 16
 3.1 General 16
 3.2 Ball valves 17
 3.3 Butterfly valves 24
 3.4 Gate valves 30
 3.4.1 Wedge gate valve 31
3.4.2 Parallel double disk gate valve (expanding wedge) 36
3.4.3 Parallel slab/through conduit gate valves 38
3.4.4 Parallel slide valves 41
3.4.5 Knife-edge gate valve 43
3.4.6 Compact steel gate valve (extended body) 43
3.4.7 Venturi gate valve 44
3.5 Globe or screw-down stop valves 45
3.6 Plug valves 49
3.7 Diaphragm valves 60
3.8 Pinch valves 62
3.9 Sampling valves 63
3.10 Slam-shut valves 64
3.11 Rotating disk valves 66
3.12 Diverter valves 67
3.13 CCU slide valves 68
3.14 Body/bonnet/cover joints 69

Chapter 4 Valve Operation and Isolation 71
4.1 Operability 71
4.2 Isolation 72
4.2.1 Positive isolation 73
4.2.2 General isolation 73
4.2.3 Block and bleed 75
4.2.4 Double block and bleed 75
4.2.5 Cavity relief 77

Chapter 5 Valve Types for Prevention of Flow Reversal (Check) 78
5.1 General 78
5.2 Installation and process design considerations 79
5.3 Valve categories 81
5.4 Lift check valves 81
5.5 Swing check valves 84
5.6 Diaphragm check valves 91
5.7 Piston type valves 91
5.8 Screw-down stop and check valves 92
5.9 Wafer check valves 93
5.10 Spring-assisted, axial flow, ‘anti-slam’ check valves 95
Chapter 6 Valves for Special Applications

6.1 General 98
6.2 Low emission service 99
6.3 Cryogenic service 99
6.4 Vacuum service 102
6.5 Deluge valves 103
6.6 Excess flow valves 103
6.7 Float operated valves 104
6.8 Flush bottom outlet valves 105
6.9 Iris valves 107
6.10 Rotary (or metering) valves 107
6.11 Emergency shutdown valves 107
6.12 Sub-sea valves 108

Chapter 7 Wellhead Gate Valves for the Petroleum Industry

7.1 Valve types 109
 7.1.1 Floating seat 109
 7.1.2 Fixed seat/floating gate 109
 7.1.3 Split gate 109
7.2 Valve selection 110
 7.2.1 Actuation 111
 7.2.2 Sandy service 113
7.3 Design requirements 113
 7.3.1 General 113
 7.3.2 Valve stem seals 113
 7.3.3 Seat-to-gate sealing 114
 7.3.4 Seat-to-body sealing 115
7.4 Materials 115
7.5 Supporting calculations 116
7.6 Testing 116

Chapter 8 Valve Materials 117

8.1 General 117
8.2 Materials for fire hazard areas 120
8.3 Elastomers and plastics 122
Contents

8.4 High temperature service 123
8.5 Low temperature service 123
8.6 Anhydrous ammonia service 123
8.7 Chloride service and environments 124
8.8 Sour service 124
8.9 Hydrogen service 124
8.10 Wet CO₂ and chlorine services 124
8.11 Material composition of welding end valves 124
8.12 Plated components 125
8.13 Gland packings 126
8.14 Bolts, nuts, and screws 127
8.15 Material temperature limitations 127
8.16 Chemical, etc., resistance charts 129

Chapter 9 Sizing and Resistance to Flow 134
9.1 Incompressible (liquid) flow 134
9.2 Compressible (gas or vapour) flow 137
9.3 Surge 137

Appendix A Valve Selection Tables 141
Appendix B Common Abbreviations 159
Appendix C List of Standards 161
Appendix D Glossary of Valve Terminology 164
Bibliography 192
Index 193