1) TECCUS

GeoMeasurements by Pulsing TDR Cables and Probes

BIBLIOTECA TO

e

as ld

ld is of

of rn

> lu k

ne or 's

t-

rd

ig at

is al ie

> e er ly

> > 0

;y n. S.

le

Contents

1	INTRODUCTION
2	BASIC PHYSICS 1:
	Pulse Testing, 15
	Transmission Line Parameters, 17
	TDR Reflection Type, 22
	Resistive Terminations and the Reflection Coefficient, 22
	Reactive Terminations, 24
	Reactances along Cable, 25
	Rise Time, 26
	Electric Field in Coaxial Cable, 27
	Cable Geometry and Capacitance, 30
	Measurement of Dielectric with Parallel Rods, 32
	Propagation Velocity and Dielectric Constant, 34
	Electric Field Distribution and Sampling Volume around Parallel Rods, 35
	Measurement of Conductivity with Parallel Rods, 38
	Attenuation in Conductive Media, 40
	Attenuation of Multiple Reflections, 43
	Variety of TDR Waveforms, 46
	Column column service e evincente servición
3	MONITORING SOIL MOISTURE 4
	Soil Moisture Terminology, 49
	Probe Design, 51
	Site-Specific Calibration Methods, 54
	Topp's Calibration Equation-the "Yardstick," 57
	Calibration Coefficients for General Relationships, 58
	Dielectric Properties and Absolute Water Content, 60
	Influence of soil type, 60

Influence of soil density and shrinkage, 66
Influence of temperature, 68
Frequency considerations, 72
Alternative Soil Moisture Calibration Equations, 75

4 FIELD EXPERIENCE AND VERIFICATION OF SOIL MOISTURE MEASUREMENT

81

Lysimeter and Bowen Ratio, 81
Neutron Probe, 82
Nuclear Density Moisture Gauge, 86
Applications and Installation Considerations, 87
Agriculture–irrigation control, 88
Landfill cover performance, 91
Infiltration and wetting fronts, 94
Soil sampling, 94
Road and embankment construction on expansive clay, 96
Freeze-thaw behavior of soils, 99
Freeze-thaw pavement performance, 102

5 MONITORING LOCALIZED DEFORMATION IN ROCK

102

General Installation Considerations, 107
Reference crimps improve location accuracy, 109
Interpretation of Reflections, 109
Simple shearing, 110
Effect of shear zone width, 116
Simple extension, 122
Combined shear and extension, 124
Resolution and Attenuation, 127
Resolution, 127
Attenuation, 129
Influence of distance, 132
Influence of multiple deformations, 134

Crimp optimization and resolution, 136 Noise, 137

6 FIELD EXPERIENCE AND VERIFICATION OF ROCK DEFORMATION MEASUREMENT 139

Comparison with Inclinometer, 139
Comparison with Observation Holes, 144
Comparison with Elastic Beam Theory, 149
Installation Details, 152
Deep holes, 152
Up holes (mine roof), 153
Applications, 154
Continuous Monitoring–strata movement over active mines, 154
Multiplexing–strata movement over an abandoned mine, 161
Production Well Deformation–in situ sulphur mine, 165

7 MONITORING SOIL DEFORMATION

169

Localized Shearing Deformation of Soil, 169
Advantages of TDR Measurement of Localized Shearing in Soil, 170
Required Grout and Cable Compliance, 174
Localized vs. General Shear, 178
Applications, 181
Highwall slope and tailings embankment, 181
Relative stiffness revisited, 190
Landslide monitoring, 194
Comparative Performance and Costs, 196
Gravel Pack Alternative, 198
Magnitude vs. displacement, 202
Low sensitivity of cable with gravel backfill, 204

8 MONITORING STRUCTURAL DEFORMATION 207

MTDR versus OTDR for Structural Monitoring, 207 Internal Structural Deformation-Installation and Performance, 208 Masonry wall on spread footing, 209 Installation, 210 Performance, 210 Reinforced concrete column, 212 Installation, 212 Performance, 214 External Structural Deformation-Installation, 218 Scour depth measurement during flood, 219 Bridge pier or abutment movement, 221 OTDR and Elastic Structural Deformation, 222 Fiber optic component of a system, 223 OTDR component of a system, 225 Other optical measurement techniques, 227 Measurement of Stress, 227 Candidate fibers, 228 Direct transverse strain and embedded stress

tests, 229
Measurement of Longitudinal Strain, 231

Comparison with Other Technology, 252

9 AIR-LIQUID INTERFACES

235

Background, 235

TDR Reflection at the Air-Liquid Interface, 236

Correction for the presence of residual water drops, 239

Coaxial cable offers advantages over twisted pair

wire, 241

Applications and Case Histories, 244

Standpipe piezometer, 244

Retrofit of dam piezometer, 245

Water levels above and within an abandoned mine, 248

Water level while drilling, 251

Detection of Leaking Liquids, 259
Sensor cable, 260
Sensor string components, 260
Application of leak detection, 264

10 ELECTRONICS

267

Moisture Probes and Transmission Line Transformers, 267 Properties of Coaxial Cables, 271 Transducer Cables. 271 Baluns or Transmission Line Transformers, 278 Connectors, 280 Low Loss Lead Cable, 281 Multiplexer, 282 Pulser/Sampler, 282 Memory, 287 Viewing TDR Waveforms, 289 Packaged Systems for Soil Moisture, 289 Computer Control or Serial Communication, 290 Telemetry/Cellular Data Acquisition, 291 Modem/Phone Line Data Acquisition, 294 Battery Power for Remote Monitoring, 294 Case history-dam monitoring, 295 Detailed Examples, 297 Rock deformation, 297 Soil moisture, 297 Pending Developments, 300

11 SOFTWARE

301

General Control/Acquisition Software, 301
SP232-Laptop Computer Control, 301
Acquisition settings, 306
Remote use, 308
CSI PC208-Datalogger Control and Multiplexing, 310
Acquisition parameters, 310

Example interrogation of multiple transducer cables, 312

Specialized Software, 314

Soil Moisture-Acquire and Interpret Waveforms, 314

Parallel rod probes: WinTDR and PYELAB, 314

Segmented probes: ViewPoint, 316

Diode switching control, 317

Types of scans, 319

Deformation-Analyze Changes in Raw Waveforms, 319 NUTSA, 320

Waveform data formats, 321

Creation of scratch files and concatenation of datablocks, 323

Identification of waveform changes, 323

Quantifying waveform changes, 326

Storing waveforms as ASCII files, 329

Requirements and limitations, 331

APPENDICES

A: Cable-Grout Properties	333
B: References	343
C: List of Symbols	369
D: Author Index	379
E: Subject Index	385
F. Vendors	395