PROCEEDINGS

of the

TENTH
WORLD
CONFERENCE

on

EARTHQUAKE ENGINEERING

19-24 July 1992 Madrid Spain

Asociación Española de Ingeniería Sísmica

Sponsored by

International Association for Earthquake Engineering

Published by

A.A.Balkema / Rotterdam / Brookfield / 1992

Contents of Volume 2

4 Strong ground motion: Site effects

4.1 Ground motion characteristics	
Characteristics of vertical ground motions recorded during recent California earthquakes M. Lew	573
A study on the characteristics of seismic vertical motion N.Fujii, T.Annaka, H.Ohki, M.Fujitani & N.Yasuda	577
Probing characteristics of vertical strong motions Y. Akao, S. Fukushima & M. Mizutani	583
Some features of near-field strong ground motions in the central part of Japan K. Kudo, M. Sakaue & Z. Wang	589
Characteristics of long-period ground motions in Tokyo Bay area, Japan S. Zama	593
Relatively long period ground motions expected in the Tokyo bay region T. Minami & M.Ohori	599
Directional behavior of strong ground motions during the Loma Prieta earthquake T. Kaneko, T. Mikami, T. Hayashikawa & Y. Matsui	605
Ground motions from intraplate earthquakes H.Bungum, A.Dahle, G.Toro, R.McGuire & O.T.Gudmestad	611
Relation between maximum amplitude ratio (a/v, ad/v²) and spectral parameters of earthquake ground motion T. Sawada, K. Hirao, O.Tsujihara & H.Yamamoto	617
Influence of size of plains on earthquake motion characteristics S.Ohba & I.Toriumi	623
Amplitude of surface waves in ground motion on alluvial basin I. Shibuya	629
Results of observation of torsional ground motions and response analysis C.S.Yeh, C.H.Loh & G.W.Su	635
Energy input rate spectra of earthquake ground motions	641

Inelastic response spectra for narrow band earthquakes F.Tarquis & J.M.Roesset	645
Spatial variation study on earthquake ground motion observed by the Chiba array F.Yamazaki & T.Türker	651
Estimated strong ground motions during the Spitak, Armenia earthquake of December 7th, 1988 H. Kobayashi	657
Computer simulation of wave propagation characteristics near a source using a framework model M.Abe, T.Kikuchi & T.Sato	663
Effects of geological irregularities on ground motion characteristics K.Tokida, K.Tamura & H.Fukada	669
4.2 Strong motion attenuation	
On the attenuation of ground accelerations in Europe N.N.Ambraseys & J.J. Bommer	675
Attenuation of waves in ground with fading memory S.Xue, J.Tobita, M.Izumi & T.Hanzawa	679
Attenuation of shear waves in a sediment S. Kinoshita	685
A study on the evaluation of Q-value and the attenuation characteristics of 1 second or shorter period earthquake ground motion in and around the Tokyo metropolitan area of Japan S.Nagahashi	691
Energy analysis for the non-linear earthquake responses of structures Z. Huang, S. Wang & M. Lai	697
4.3 Synthesis of earthquake ground motion	
Expected ground motion at a site based on hypothetical fault models in Greece D.I.Makaris, G.N.Stavrakakis & J.C.Drakopoulos	703
Prediction of strong ground motions due to earthquake faulting in Japan Y. Kitagawa & T. Nishide	709
Ground motion study by fault model for tall building design M.Niwa, T.Ohta, T.Ikeura, S.Ohno, T.Nozawa & M.Takemura	715
Near-fault site effects: Some theoretical results J.C.Gariel	721
The construction of large earthquake by a superposition of small events <i>K.Irikura</i>	727
	731
A stochastic rupture process model for synthetic S-waves accelerograms computations and associated response spectra for large faults A. Herrero, P. Bernard & P. Mouroux	737

Study on forward prediction model of earthquake ground motion for seismic design of structural systems M. Kawano, H. Dohi, Y. Osada & T. Kobori	741
Separation of source, propagation and local site effects from accelerographs and its application to predict strong ground motion by summing small events M.Tai, Y.Iwasaki & M.Oue	747
Study on characteristics of near-field seismic motions in a three-dimensional sedimentary basin due to a fault source using Aki and Lamer method H.Uebayashi, Y.Takeuchi & M.Horike	751
Multi-event inversion analysis for simpler representation of source mechanism S.Sawada, CS.Fu, T.Kitano & S.Yoshikawa	757
A numerical study on characteristics of Q values in two-dimensional inhomogeneous soil deposits I.Suetomi, S.Nakamura & N.Yoshida	761
Prediction of response spectra at any site in Mexico City E.Reinoso, L.E.Pérez-Rocha, M.Ordaz & A.Arciniega	767
Influence of the magnitude, distance and natural period of soil in the strong ground motion B. Benito, D. Rinaldis, V. Gorelli & A. Paciello	773
Band limited duration and spectral energy: Empirical dependence on frequency, magnitude, hypocentral distance and site conditions V.Caillot & P.Y.Bard	781
Risk spectrum taking into account fault rupture mechanisms J.Kiyono & T.Sato	787
Spectral curves -versus- distance and dynamic site-periods J.L.Alonso	793
4.4 Stochastic modelling of ground motion	
Prediction of site-specific strong ground motion using semi-empirical methods K.Kamae & K.Irikura	801
Generation of simulated earthquake motions compatible with multi-damping response spectra M. Hirasawa & M. Watabe	807
Stochastic wave model of seismic ground motion T. Harada	811
A two dimensional nonstationary optimized accelerogram scaled for magnitude, distance and soil conditions M. Hammoutene, B. Tiliouine & P.Y. Bard	817
A new algorithm for simulating strong motion records M.Grigoriu & S.Balopoulou	823
Nonstationary models of earthquake accelerograms F.Carli	829
Stochastic characterization of ground motion and applications to structural response K. Papadimitriou & J. L. Beck	835

Spectral estimation of bivariate non-stationary processes P.D.Spanos, W.Y.Tein & R.Ghanem	839
Generation of spatially incoherent strong motion time histories N.A.Abrahamson	845
Ground motion simulation by using simplified three-dimensional finite element method <i>T.Toshinawa & T.Ohmachi</i>	851
The use of ARMA models in strong motion modelling S.Ólafsson	857
Random field models of spatially varying ground motions and the estimation of differential ground motions K.Tamura, S.R.Winterstein & H.C.Shah	863
Statistical parameters of AM and PSD functions for the generation of site-specific strong ground motions A.T.Y.Tung, J.N.Wang, A.S.Kiremidjian & E.Kavazanjian	867
Ground motion analysis using dynamic stochastic finite element method H.Ukon, Y.Okimi, T.Yoshikiyo & T.Matsumoto	873
A stochastic ground motion model with geophysical consideration S. Suzuki & A. S. Kiremidjian	879
Simulation of seismic ground motion in the New Madrid area using analytically derived frequency-wave number Fourier amplitudes G. Deodatis & A. Theoharis	885
Non-stationary models of ground motion R.T. Duarte & A. Campos-Costa	891
Artificial accelerograms consistent with the 1980 Irpinia earthquake G. Bosco, M. Dolce & M. Marino	895
Spectral analysis of earthquake accelerations as realizations of a non-stationary stochastic process J.Valerio	901
4.5 Topographical effects	
Comparison of seismic motions in two- and three-dimensional sedimentary basins M. Horike & Y. Takeuchi	911
The local effects of curved and parallel soil medium to seismic waves PL.Chen	917
Effects of canyon topographic conditions on ground motion due to harmonic P and SV wave incidences C.Zhao & S.Valliappan	923
Topographical site response for harmonic and pseudo-earthquake motions H.Takemiya & T.Tomono	929
High frequency response of a sediment-filled valley for seismic waves S.Yuzo	935

Seismic response of alluvial valleys for incident P, S and Rayleigh waves: A boundary integral formulation F.J.Sánchez-Sesma, J.Ramos-Martínez & M.Campillo	941
Site effects of earthquake ground motions E. Kuribayashi, T.Niiro, S.Nishioka, K.Sonoda & T.Jiang	947
The extended quasi-three-dimensional ground model <i>T.Suzuki</i>	953
Three-dimensional earthquake site response on a CM-2 X.Li, J.Bielak & O.Ghattas	959
4.6 Site effects: Estimation and observation	
The spatial variation of earthquake ground motion and effects of local site conditions J.F.Schneider, N.A.Abrahamson & J.C.Stepp	967
Hybrid non-linear response of soft soils L.E.Pérez-Rocha & F.J.Sánchez-Sesma	973
An empirical method for identifying non-linear soil amplification of strong earthquake motions <i>M.Kamiyama</i>	979
Three dimensional underground structure of Tokyo Metropolitan area E. Shima	985
Microtremor analysis as prediction tool for site dependent strong ground motion M. Haile	991
Local site effects detected by microtremor measurements on the damage due to the 1990 Philippine earthquake T.Ohmachi & Y.Nakamura	997
Bedrock motion characteristics during the 1989 Loma Prieta earthquake in the northwest area from the epicenter J. Ejiri, K. Wakamatsu, T. Fujimori, T. Nakayama, Y. Goto & Y. Yasui	1003
Site effect characterization using records of dense strong motion earthquake seismometer array in Sendai I.Okawa, T.Kashima & Y.Kitagawa	1009
Modeling nonlinear ground motion amplification factor by local soil parameters M.Sugito, S.King, A.S.Kiremidjian & H.C.Shah	1015
Site effects evaluated by detailed seismic intensity, peak acceleration and velocity, ground vibration by aftershock and microtremor, surface geology, and theoretical amplification on the ground in Akita City, Japan M.Nogoshi & N.Nakajima	
Preliminary results from a vertical array in Garner Valley, California and B. Mohammadioun, G. Mohammadioun & J.C. Gariel	
Site effects on strong-motion records of the 1985 Chile earthquake and their nonlinear behavior S. Midorikawa	1031

Site amplification through measurement of long period microtremors: Predominant period of motion	1037
M.Dravinski, H.Yamanaka & H.Kagami	
Larger soil amplification for stronger ground motion from SMART-1 records S. Figueras, A. Roca, X. Goula & R. Blàzquez	1043
Analysis of frequency dependence of some strong motion parameters for different soil conditions $M.Herr\'{a}iz \& B.Benito$	1049
Shear stack tests on soil-structure interaction T.Matsuda, H.Tomura, M.Hayashi, T.Furihata & S.Nakayama	1057
Response spectrum of ground shear strain CH.Chen & PC.Hou	1063
Site response in the Granada basin (Southern Spain) based on microtremor measurements J. Morales, K. Seo, T. Samano, J.A. Peña, J. M. Ibañez & F. Vidal	1069
Damage scenarios induced by the major seismic events from XV to XIX century in Naples city with particular reference to the seismic response E. Esposito, G. Luongo, S.M. Petrazzuoli & S. Porfido	1075
Site effects modelling experiment P.Teves-Costa & L.A.Mendes-Victor	1081
Site effects during Andalusian earthquake (12/25/1884) C. López Casado, J. Delgado, J.A. Peláez, M.A. Peinado & J. Chacón	1085
4.7 Wave propagation	
Propagation characteristics of seismic motion in Ashigara Valley, Japan S. Higashi & K. Kudo	1093
Is Mexico's long lasting ground motion made of gravity waves? F.J.Chávez-García & P.Y.Bard	1099
Surface wave propagation analysis in the Kanto basin M. Motosaka, M. Kamata, O. Sugawara & M. Niwa	1105
Study on generation of surface wave from side into plain H.Yokoyama	1111
A simple numerical method for the earthquake response analysis of surface ground J.Zheng & C.Tamura	1117
Frequency-wave number Fourier amplitudes of seismic ground motion in a multiple-layered half-space due to a Haskell-type source A.Theoharis, G.Deodatis & A.Papageorgiou	1121
Simulations of long period strong ground motions during the 1990 Upland earthquake, California S.Yamamoto, Y.Hisada & S.Tani	1127
Author index for Volume 2	1133