RIVER AND RESERVOIR YIELD

by

T. A. McMAHON

and

R. G. MEIN

WATER RESOURCES PUBLICATIONS

TABLE OF CONTENTS

		Page
Preface		i
Acknow	ledgements	ii
Table of	Contents	iii
Chapter	1 INTRODUCTION	1
1-1	LOW FLOW HYDROLOGY AND YIELD	2
1-2	SOME PRACTICAL PROBLEMS	2
1-3	THE DESIGN PROCESS	5
1-4	FROM PROBLEMS TO SOLUTIONS	5
1-5	CURRENT USE OF STORAGE-YIELD PROCEDURES	6
1-6	NOTATION	6
Chapter	2 STREAMFLOW CHARACTERISTICS	8
DATA		8
2-1	TIME STEP AND EVENT DURATION	8
2-2	HOMOGENEITY, CONSISTENCY, STATIONARITY, REPRESENTATIVENESS	8
2-3	DATA LENGTH	9
2-4	DEFINITION OF HYDROLOGIC YEAR	11
2-5	ESTIMATION OF MISSING DATA	12
2-6	DATA EXTENSION	12
PARA	METER SPECIFICATION	17
2-7	MEASURES OF CENTRAL TENDENCY	19
2-8	MEASURES OF VARIABILITY	19
2-9	MEASURE OF SKEWNESS	20
2-10	MEASURES OF PERSISTENCE	21
2-11	STANDARD ERRORS OF PARAMETERS	23
CHAR	ACTERISTICS OF WORLD STREAMS	27
2-12	TYPICAL PARAMETER VALUES	27
DIST	RIBUTIONS AND TRANSFORMATIONS	37
2-12	NORMAL DISTRIBUTION	20
2-15	LOC-NORMAL DISTRIBUTION	30
2-15	CAMMA DISTRIBUTION	41
2-16	PEARSON TYPE ITL DISTRIBUTION	41
2-17	LOG-PEARSON TYPE III DISTRIBUTION	43

2-18	KRITSKY-MENKEL DISTRIBUTION	44
2-19	EXTREME VALUE TYPE I (GUMBEL) DISTRIBUTION	44
2-20	EXTREME VALUE TYPE III (WEIBULL) DISTRIBUTION	45
2-21	BOX-COX TRANSFORMATION	47
2-22	WILSON-HILFERTY TRANSFORMATION	48
2-23	DISTRIBUTION CHOICE	49
2-24	NOTATION	52
Chapter 3	YIELD OF UNREGULATED STREAMS	55
3-1	DATA USE AND ANALYSIS	55
FLOW	DURATION CURVES	58
3-2	FLOW DURATION ANALYSIS	58
3-3	USES OF FLOW DURATION CURVES	62
LOW F	LOW FREQUENCY CURVES	62
3-4	ANNUAL FREQUENCY CURVES	63
3-5	PARTIAL DURATION FREQUENCY SERIES	66
3-6	USES OF LOW FLOW FREQUENCY ANALYSIS	68
3-7	DISTRIBUTION OF n-YEAR FLOWS	69
OTHER	ANALYSES	82
3-8	RECESSION ANALYSIS	82
3-9	FLOW INTERVAL APPROACH	84
3-10	FLOW SPELLS	85
3-11	REGIONALIZATION	87
3-12	NOTATION	93
Chapter 4	SINGLE RESERVOIRS: CAPACITY-YIELD ANALYSES	96
4-1	INTRODUCTION	96
DEFIN	IITION OF TERMS	99
4-2	STORAGE TERMS	99
4-3	RELEASE TERMS	99
4-4	RELIABILITY TERMS	101
4-5	CRITICAL PERIOD	103
4-6	RANGE	103
PREL	IMINARY DESIGN TECHNIQUES	104
4-7	MASS CURVE AND RESIDUAL MASS CURVE METHODS	104
4-8	MINIMUM FLOW APPROACH	109
4-9	ALEXANDER'S METHOD	111

	4-10	DINCER AND GOULD'S GAMMA METHODS	117
	4-11	McMAHON'S EMPIRICAL EQUATION	123
	4-12	HARDISON'S GENERALIZED METHOD	125
	4-13	GOULD'S SYNTHETIC DATA PROCEDURE	130
	4-14	OTHER METHODS	134
	4-15	DISCUSSION OF PRELIMINARY DESIGN TECHNIQUES	135
	FINAL	DESIGN PROCEDURES	136
	4-16	BEHAVIOUR ANALYSIS	136
	4-17	SIMULATION USING GENERATED DATA	141
	4-18	PROBABILITY MATRIX METHODS	142
	4-19	DISCUSSION OF FINAL DESIGN TECHNIQUES	1 59
	SPECI	AL TECHNIQUES	160
	4-20	SEQUENT PEAK ALGORITHM	161
	4-21	HURST'S PROCEDURE	164
	4-22	PHATARFOD'S PROCEDURE	166
	4-23	CARRYOVER FREQUENCY MASS CURVE ANALYSIS	169
	4-24	WITHIN-YEAR FREQUENCY MASS CURVE ANALYSIS	177
	4-25	SEMI-INFINITE RESERVOIR	180
	EFFEC	T OF EVAPORATION ON RESERVOIR YIELD	184
	4-26	EVAPORATION ADJUSTMENT TO STORAGE SIZE	185
	4-27	EVAPORATION ADJUSTMENT TO DRAFT	187
	4-28	THE INFLUENCE OF EVAPORATION ON POTENTIAL YIELD	187
	4-29	NOTATION	189
Ch	onter 5	SINCLE RESERVOIRS. ASSESSMENT OF	
Ch	apter 5	CAPACITY-YIELD METHODS	193
	5-1	INTRODUCTION	193
	PRELI	MINARY AND SPECIAL DESIGN TECHNIQUES	193
	5-2	MASS CURVE METHOD AND MINIMUM FLOW	
		APPROACH OF WAITT	198
	5-3	ALEXANDER'S METHOD	198
	5-4	DINCER AND GOULD GAMMA METHODS	199
	5-5	McMAHON'S EMPIRICAL EQUATION	202
	5-6	HARDISON'S GENERALIZED METHOD	203
	5-7	GOULD'S SYNTHETIC DATA PROCEDURE	204
	5-8	GUGLIJ'S SYNTHETIC DATA PROCEDURE	205
	5-9	CARRYOVER FREQUENCY MASS CURVE METHODS	205
	FINAL	DESIGN TECHNIQUES	207
	5-10	BEHAVIOUR ANALYSIS	211

	5-11	GOULD'S PROBABILITY MATRIX METHOD	212
	5-12	SIMULATION WITH GENERATED SEQUENCES	213
	VARIA	BILITY OF STORAGE AND DRAFT ESTIMATES DUE TO	213
	SAMPL	ING ERROR	215
	5-13 5-14	ANALYTIC APPROACHES TO QUANTIFY SAMPLING ERROR STOCHASTIC/EMPIRICAL APPROACH	214 219
	RECOM	MENDATIONS	220
	5-15	RECOMMENDED METHODS	220
	5-16	NOTATION	222
Ch	apter 6	STREAMFLOW DATA GENERATION	223
	6-1	INTRODUCTION	223
	6-2	TIME SERIES COMPONENTS	223
	SINGL	E-SITE MODELS	225
	6-3	HISTORICAL DEVELOPMENTS TO 1960	225
	6-4	ANNUAL MARKOV MODEL	226
	6-5	THOMAS AND FIERING SEASONAL MODEL	230
	6-6	MODIFICATIONS FOR NON-NORMAL STREAMFLOWS	231
	6-7	DISAGGREGATION OF ANNUAL FLOWS	241
	6-8	ZERO FLOWS	244
	MULTI	-SITE MODELS	249
	6-9	BACKGROUND	249
	6-10	RECYCLED HISTORICAL SEQUENCES	250
	6-11	GENERATED FLOWS	251
	6-12	RESIDUAL APPROACH	252
	6-13	SUMMARY STEPS FOR LOG-NORMAL GENERATION	261
	6-14	DISAGGREGATION OF ANNUAL INTO MONTHLY FLOWS	262
	6-15	DATA REQUIREMENTS	263
	LONG	MEMORY MODELS	264
	6-16	BACKGROUND	264
	6-17	PRESERVING h IN TIME SERIES MODELS	264
	6-18	BROKEN LINE MODEL	267
	6-19	MULTI-SITE BROKEN LINE MODELS	270
	EVALU	JATION OF GENERATION MODELS	270
	6-20	THEORY OF MODEL EVALUATION	270
	6-21	PRACTICE OF MODEL EVALUATION	271
	6-22	MODEL PERFORMANCE	274
	6-23	WHEN AND HOW TO USE GENERATED DATA	286

RECO	MMENDATIONS	294
6-24	RECOMMENDED TECHNIQUES	294
6-25	NOTATION	295
Chapter	7 MULTIPLE RESERVOIR SYSTEMS	303
7-1	INTRODUCTION	303
7-2	SIMULATION WITH HISTORICAL DATA	305
7-3	SIMULATION WITH GENERATED DATA	307
7-4	TRANSITION MATRIX APPROACHES	308
7-5	MATHEMATICAL OPTIMIZATION METHODS	316
7-6	NOTATION	318
REFER	ENCES	319
Appendi	x A ADJUSTMENT FOR ASSUMPTION OF	
	INDEPENDENCE OF ANNUAL FLOWS	337
Appendi	ix B THEORETICAL JUSTIFICATION OF A NON-	
	SEASONAL MARKOV MODEL	342
Appendi	x C SAMPLE STREAMFLOW DATA SETS	347
AUTHO	R INDEX	356
SUBJE	CT INDEX	361