PROCEEDINGS OF IS-TOKYO'96/THE SECOND INTERNATIONAL CONFERENCE ON GROUND IMPROVEMENT GEOSYSTEMS / TOKYO/14-17 MAY 1996

Grouting and Deep Mixing

Edited by

RYOZO YONEKURA

Toyo University, Japan

MASAAKI TERASHI

Nikken Sekkei Nakase Geotechnical Institute, Japan

MITSUHIRO SHIBAZAKI

Japan Chemical Grouting Association

VOLUME 1

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/1996

Table of contents

Preface	XV
Organization	XVII
1 Grouting: Engineering properties of materials and improved soil	
A comparison between mixing and grouting approaches for treating calcareous expansive clay	3
S.N.Abduljauwad, K.S.Al-Yahyai & O.M.Abu-Hujair	0
Experience in use of finely dispersed cement grouts V.A.Ashikhmen & L.E.Pronina	9
Stabilization of soils and grouting of model driven piles in calcareous sands A. Bennabi & D. Levacher	15
Properties and applications of polyurethane for grouting BS.Chun & DS.Ryu	21
Engineering properties of residual soil-cement mixtures N.C. Consoli, F. Schnaid, P.D. M. Prietto & J.A. Rohlfes Jr	25
Properties of microfine cement grout and grouting tests using the simulated soil S.Fujii, O.Matsuo, J.Koseki & M.Shimoda	31
The seepage resistance of suspension-type grouts in soils S. Honma & M. Inada	37
New method for determining a compaction grout Y. Iagolnitzer, R. Katzenbach, Y. Lacour & A. Monnet	41
Application of alkaline activated waterglass for chemical grouting M. Kojo, I. Kurita & K. Shimoda	47
Pulverized fly ash – Groutability and effectiveness I.N. Markou & D. K. Atmatzidis	53
Development of grouting material for cement powder grouting N. Matsumoto, A. Nakamura, Y. Yamaguchi, E. Onuma, T. Hashimoto & H. Yamagata	59

Microfine cement grouting as a countermeasure against liquefaction M. Sano, O. Matsuo, J. Koseki & M. Shimoda	65
Study on long-term strength properties of suspension grouts with ultra-fine-grain materials <i>H. Shibata</i>	71
Rheological properties of microfine cement dust grouts A.V.Shroff, N.H.Joshi & D.L.Shah	77
Applicability of Cement Powder Grouting Method S.Takebayashi, T.Fujisawa, N.Yasuda, M. Kobayashi, Y.Yoneda & N.Tahara	83
Basic test of low mobility grout for compaction grouting M.Tamura, H.Shibata, N.Jinnai & K.Kobayashi	89
A study of eliminating the toxicity of chemical grouting with antagonism Tan Risheng	93
A new high grade permeable non-cement suspension grout Y.Terado, K.Teramoto, K.Matsui & K.Kosuge	97
Laboratory element tests on the effect of fracturing grouting on cyclic liquefaction resistance <i>K.Uchida, H.Ohmori, T.Takeda & M.Shimoda</i>	103
Permeating properties of ultra-fine cement grout S.Yoneda, S.Okabayashi, O.Baba, M.Tamura & A.Mori	107
2 Design and execution of grouting	
Permeation grouting and fracturing in sandy soil H.G.Choi & E.Yanagisawa	117
Monitoring of chemical injection mode by Electrical Resistivity Method H. Fuijisawa & K. Kuwabara	123
Quality assessment of cement-mixed soil ground by S-wave tomography E. Hane & H. Saito	129
Ground behaviour during soil improvement by Jet Grouting H. Imanishi & Y. Yamauchi	133
Double packer grouting method under artesian pressure A. Kamide, N. Nishimura, S. Matsuo, J. Kawai, T. Yamamoto & H. Tanimuro	137
Estimation method of underground improvement by temperature measurement in grouting <i>T.Kawachi</i>	
Study on evaluation of grouting effects using artificial neural network T. Kawamura, T. Yasuda, M. Matsushima, N. Yasuda, K. Kumagai & T. Iijima	147
Variants of jet grout technology without loss of grout M.F. Khassine	153
Applicability limit of resistivity to evaluate improved region H. Komine & K. Nishi	

Design of grouting cylinder for a deep alpine tunnel K. Kovári & G.Anagnostou	103
Grouting for a piperoofed underpass construction H.J.Liao & S.C.Shu	171
Basic study grouted sand specimen preparation methods and compressive strength S. Matsui, Y. Nakazato, T. Tokoro & N. Takahashi	177
On a quantitative management of dam foundation grouting by real time analysis K. Mihashi, K. Takahashi, T. Tashiro & K. Hayashi	183
A report of a cutoff work in Ryukyu limestone layer by chemical grouting T. Mikami, K. Sakamoto, I. Sakaguchi & M. Hosokawa	189
Differences of p-q and p-t curves from pressure loss of sleeve grouting equipment <i>T.Miyamoto</i>	195
The use of the electrosilication method at the foundation consolidations for old architectural monuments in Iaşi, Romania <i>P.Raileanu, V.Musat & I.Lungu</i>	201
Water extraction/chemiluminescence detection of grout in soil H.Sakai, O.Murata & H.Tarumi	205
Allowable grouting pressure during installation of non-circular sewer linings S.M. Seraj & U.K. Roy	209
Development of a new method by using double tube and percussive drilling machine N.Takahashi, S. Koike, T.Tokoro & M.Murata	215
Development of a new injection method by utilizing liquid carbon dioxide N.Tanzawa, S. Kashima, A. Horiba, M. Murata & T.Tokoro	221
Evaluation of grouted zone by Resistivity Method H.Tarumi, H.Iwasa & N.Sekiguchi	225
Compaction grouting for correcting building settlement L.W.Wong, M.C.Shau & H.T.Chen	231
Penetration mechanism of immiscible grout through saturated soil L.H.Zhang, H.J.Xiong & Q.Zhang	237
3 Application of grouting	
Compaction grouting for buildings suffering uneven settlement T.Akiyama, K.Ohsawa & M.Watanabe	
Abatement of soil liquefaction under existing structures H.R.Al-Alusi	249
The peculiarity of grouting of rock foundation with low water permeability <i>E.S.Argal</i>	255
Application of jet-grouting in the Three Gorges Project Zhenheng Cha & Yidong Zhang	259

Grouting in near surface tunnelling in gravel layer YC.Chen & YS.Hsieh	263
Tunnelling through an alluvial deposit BS.Chun, DK.Chung, SR. Kim, MR.Oh & YI. Koh	269
Effectiveness of grouting for river crossing tunnelling BS.Chun, CS.Choi, CB.Shin & SR.Kim	275
Compaction grouting in the UK – A review R.M.Crockford & A.L.Bell	279
Jet grouting allows passage of a 9,8 m shield under a building in Lisbon V.D.Altan & P.Mosiici	285
Jet grouting and pipe jacking in a shallow urban tunnel construction G.Guatteri, T.Harada, L.E.Sozio, A.Koshima & P.Mosiici	291
Case of jet grouting for 10.8 m diameter shield H.Noda, Y.Noguchi, M.Hara & K.Kai	295
Chemical grouting contributed to the urban development in Hiroshima City K. Hayashi & Y. Matsubayashi	299
Placement of deep sea caissons assisted by chemical grouting I. Kurohara, T. Kawasaki, I. Nakaii & K. Nakano	303
Grouting and drainage in Ingury hydro arch dam foundation L.I.Malyshev	309
Improvement of foundation soils of built-up banks laid on peat layers A. Mazzucato & A. Dei Svaldi	315
Chemical grouting applied to widen Tokyo Metropolitan Expressway T. Minamiyama & M. Kikuchi	321
Application of jet grouting to join shield tunnels N. Morihara, Y. Shinozuka & T. Motohashi	323
Chemical grouting of shield crossing just under JR Tokaido Main Line N.Nagato & Y.Motoki	329
Applications of MJS Method (Metro Jet System) – All-around type reinforcing and consolidating method in the ground K.Nakashima, T.Kashima, T.Sakuma & T.Murakami	333
Case study: Prevention of pile corrosion by chemical grouting S.Ohta & T.Komagata	
Protection of shield machine launch by jet grouting and freezing T.Okabe, T.Yamamoto, T.Kashiwagi & K.Tomizawa	341
Jet grouting for the solution of tunnelling problems in soft clays G. Pellegrino & D.A. Bruce	347
Large-scale jet grouting for pre-strutting in soft clay S. Sugawara, S. Shigenawa, H. Gotoh & T. Hosoi	353

Jet grouting process in expanding the diameter of improved body H.Takeshima	337
Curtain grouting under highly confined groundwater S.Tokorozaki & K.Murai	361
A case study on overcoming the problem by distorting jet grouting Wang Jie, Du Jiahong, Xu Bicheng, Fu Qiang, Han Shaoguang, Wen Guilu & Zhang Yu	365
Deep open cut base improvement injection influenced by artesian water R. Yonekura, S. Shimada, M. Taku & K. Hayashi	369
Jet grouting for construction of a RC canal in soft marine clay D.M.Yong, K.Hayashi & B.H.Chia	375
Geotechnical grouting application in China Zhang Zuomei, Xue Tao & Jiang Guocheng	381
4 Deep mixing: Engineering properties of materials and improved soil	
Stress dependent parameters of cement and lime stabilised soils H.Åhnberg	387
Deep Mixing Method of soil stabilization using coal ash J.Asano, K.Ban, K.Azuma & K.Takahashi	393
Study on soil properties affecting the strength of cement treated soils <i>M.Gotoh</i>	399
Development of solidifying material for Underground Mixing Column Row Consolidation Method in boulder and gravel soil <i>H.Hatakeda & E.Fukazawa</i>	405
On the stabilization of organic soils E. Huttunen & K. Kujala	411
Effect of humus on the binding reaction in stabilized soils K. Kujala, M. Mäkikyrö & O. Lehto	415
Studies on soil improvement adjusted at low compressive strength in Deep Mixing Method T.Matsuo, K.Nisibayashi & Y.Hosoya	421
Geotechnical aspects of industrial waste utilization – Indian experience P.Mishra & R.K.Srivastava	425
Predicting strength development by cement admixture based on water content T.S.Nagaraj, N.Miura, P.P.Yaligar & A.Yamadera	431
Influence of some pollutants on lime treated marine clay G. Rajasekaran, K. Murali, B. Dhanaseelan & R. Srinivasaraghavan	437
Lime column technique for the improvement of soft marine clay G.Rajasekaran & S.N.Rao	443
Strength characteristics of soil-lime columns sections M.A. Sabry, Kh. I. Abdel-Ghani & A. M. El Nahas	447

Deformation and strength characteristics of cement-treated soils in Trans-Tokyo Bay Highway Project F.Tatsuoka, Y. Kohata, K. Uchida & K. Imai	453
Shear strength of improved soils at lap-joint-face S.Yoshida	461
5 Design and application of deep mixing	
Open cut excavation of soft ground using the DCM Method R. Babasaki & K. Suzuki	469
Design methods of the cement-soil retaining wall X.L.Chen, Y.H.Liu & S.D.Zhang	475
Design strength of soil-cement columns as foundation ground for structures M. Futaki, K. Nakano & Y. Hagino	481
Development and application of Deep Mixing Soil Stabilization Method to control displacement of adjacent ground T.Hirai, J.Ise, T.Kusakari, M.Gotou & Y.Hibi	485
Method of Deep Mixing at Tianjin Port, People's Republic of China H. Hosomi, S. Nishioka, S. Takei & C. C. Qing	491
A new computing method for deformation of super earth wall H. Hongliang	495
Analysis of deformation of axially loaded flexible single pile Duan Ji-wei	499
Bearing capacity of improved ground with column type DMM M. Kitazume, T. Ikeda, S. Miyajima & D. Karastanev	503
Model tests on failure pattern of cement treated retaining wall M. Kitazume, T. Tabata, S. Ishiyama & Y. Ishikawa	509
Evaluation of ground deformation due to deep mixing in adjacent construction activities T.Masuda, M.Shimizu & F.Aizawa	515
Deep Mixing Method as a liquefaction prevention measure O.Matsuo, T.Shimazu, Y.Goto, Y.Suzuki, R.Okumura & M.Kuwabara	521
Application of Offshore Cement Deep Mixing Method in the construction of Yantai Port Tang Min	527
A study on horizontal resistance force of the ground improved by cement treated soil columns <i>M.Miyake & M.Wada</i>	533
Construction control system of the improved ground by Deep Mixing Method and its monitoring procedure N. Noriyasu, S. Hayashi, M. Tahara & N. Shintani	537
Evaluation of material properties for soil improvement in excavation	545

Settlement calculation of deep stabilized peat and clay O.Ravaska & K. Kujala	551
Required strength of cement improved ground S. Saitoh, S. Nishioka, Y. Suzuki & R. Okumura	557
Slope stability using the Admixture Method M. Shiomi, K. Ito, D. Nishimura, H. Tanaka & M. Tanaka	563
Effects of measures against lateral soil flow using multi-cell blocks improved by the Square Deep Mixing Method N.Tsuchiya, T.Kubota, H.Kawasaki, S.Yamagata & M.Takayama	569
Deep-cement-mixing piles stabilizing the saturated loess Zan Yuewen	573
6 Executing and application of deep mixing	
Mechanism of machine for Dry Jet Mixing Method M.Aoi & T.Tsujii	579
Experimental study on behaviour of composite ground improved by Deep Mixing Method under lateral earth pressure J.Dong, K.Hiroi & K.Nakamura	585
Application of DJM Method under special conditions <i>T.Fujita</i>	591
Monitoring of subsidence of building on ground improved by Deep Mixing Method S. Hibino	595
Quality assessment of cement stabilized soil by S-wave logging A. Hiraide, H. Azuma & K. Baba	603
Assessment of the quality of stabilized peat and clay E. Huttunen, K. Kujala & H. Vesa	607
Evaluation of soil improvement using borehole resistivity profiler S.Imamura, A.Nakajima & S.Mitsuishi	613
Large scales deep soil mixing and quality control K. Isobe, Y. Samaru, C. Aoki, K. Sogo & T. Murakami	619
Behaviour of nearby soil during improvement works by Deep Mixing Method Y. Kakihara, A. Hiraide & K. Baba	625
Deep mixing by Spreadable Wing Method K. Kawasaki, H. Kotera, K. Nishida & T. Murase	
Assessment of the quality of soil-cement columns of square and rectangular shapes formed by a Deep Mixing Method T.Mizutani, S.Kanai & M.Fujii	637
Energy consideration of the Dry Jet Mixing Method K.Nishida, Y.Koga & N.Miura	643

Strength evaluation based on logging in ground stabilized by Deep Mixing Method J.Nishikawa, S.Tada & S.Yamaguchi	649
New core sampler with planet gear for investigating the cement-mixed ground N. Sugawara, Y. Ito & M. Kawai	653
Use of non-destructive method for the evaluation of reclaimed soil column <i>M.Tamura</i> , <i>M.Futaki</i> & <i>A.Abe</i>	659
Development of a ground monitoring system in Deep Mixing Method K.Tateyama, R. Fukagawa & T.Tsujii	665
Ground improvement by cement-treatment in Trans-Tokyo Bay Highway Project K. Uchida, K. Imai, F. Tatsuoka & Y. Kohata	669
Prevention of displacements while using the DJM Method K.Uchiyama	675
Centralized control system of CDM-Method S.Yano, S.Tokunaga, M.Shima & K.Kamimura	681
7 New concept and applications of grouting and deep mixing	
Development of fracture direction controlled grouting T.Fujisawa, A.Nakamura, Y.Yamaguchi & T.Matsui	689
Fundamental tests on stabilized sand using acid silica sol K. Hayashi, T. Miyoshi, H. Yoneya, K. Zen & H. Yamazaki	695
Study on dynamic injection into small fractures A.Ohashi, J.Nishihama, O.Taira, Y.Sawa, Y.Terado & W.Liu	701
Development of a soil improvement method utilizing cross jet M. Shibazaki, H. Yoshida & Y. Matsumoto	707
A new method for soil stabilization by water jet and dry consistency grout T.Tokoro, S.Chida & K.Kitsuda	711
Strainer grouting: Step-down grouting with strainer tube <i>M.Yagi</i>	717
Development and practical applications of Large Diameter Soil Improvement Method <i>H.Yoshida</i> , <i>S.Jimbo & S.Uesawa</i>	721
Preliminary studies of solidification and chemical fixation of liquid waste containing methylene blue A.Al-Tabbaa & G.D.Moore	727
Feasibility of the newly developed large diameter short reinforced anchor <i>K.Goto</i>	733
Study on characteristics of deformation absorption method at DMM T.Ito, K.Nishibayashi, T.Ueno & S.Takahashi	737
Test of solidified columns using a combined system of mechanical churning and jetting A. Miyoshi & K. Hirayama	743

Under-railway excavation to which new Horizontal Expansion-Mixing Soil Improvement Method is applied T.Sugiki & Y.Maeda	749
Development of vibration reduction measure wave impeding block H.Takemiya, A.Nishimura, T.Naruse, K.Hosotani & M.Hashimoto	753
Development of a large diameter short reinforced anchor by Cement-Mixing Method M.Tateyama, H.Tarumi & A.Fukuda	759
Development of a high-pressure Jet Mixing Method for displacement-reducing H.Ueki, K.Hasegawa, K.Suzuki & M.Bessho	767
Formation of piles with set strength characteristics V.M.Ulitsky & S.G.Bogov	773
Deep Mixing Method at Ukishima Site of the Trans-Tokyo Bay Highway Project K.Unami & M.Shima	777
Development and application of new Deep Mixing Soil Improvement Method to form a rectangular stabilized soil mass T.Watanabe, S.Nishimura, M.Moriya & T.Hirai	783
Removal of volatile organic compounds from clay layer H.Yabuta, K.Higaki, M.Ujiie & T.Iwasaki	787
Author index	793