Time Effects in Rock Mechanics

N. D. Cristescu

University of Florida, Gainesville, USA

U. Hunsche

Bundesanstalt für Geowissenschaften und Rohstoffe, Hanover, Germany

JOHN WILEY & SONS

Chichester · New York · Weinheim · Brisbane · Singapore · Toronto

Contents

	1	Page 1	2085			
	Pre	eface	vii			
1	Ev	Experimental Foundations				
•		Introduction	1			
		General Remarks	2			
		True Triaxial Testing Equipment and Test Procedure	14			
	1.4	Uniaxial and Triaxial Creep Tests	17			
	1.4	Cinaxial and Triaxial Creep rests	1,			
2	Da	sults and Background	1			
			23			
		Creep of Rocks	43			
	2.2	2.2.1 Long Term Creep	43			
		2.2.2 Relaxation Tests and Stress Drop Tests	55			
	22	Brittle-Ductile Transition and Yield Stress	58			
41	2.3	brittle-Ductile Transition and Tield Stress	30			
-	n-		63			
3	De	formation Mechanisms for Creep				
4.5			76			
	3.2	Water-Enhanced Creep	76			
4	Rheological Constitutive Equations for Rocks					
•		Introduction	81 81			
		How to Choose the Most Appropriate Constitutive Equation	82			
		Compressibility/Dilatancy Boundary	106			
		Failure Surface	112			
		Generalization of the Model for Finite Strains	115			
	2010/06/2	Conclusions and Historical Notes	115			
33	4.0	Colletusions and Historical Notes	113			
5	Ger	neral Constitutive Equation	119			
3		General Formulation	119			
	5.2	Transient Creep	120			
	5.2	5.2.1 The Yield Function	120			
		5.2.2 The Viscoplastic Potential	129			
		5.2.3 The Irreversible Strain Rate Orientation Tensor N	136			
		5.2.4 Examples	138			
		5.2.5 Simplified Variants of the Constitutive Equation	143			
		5.2.6 Creep Formula and Comparison with the Data	145			
	5 2	Steady-State Creep	153			
	3.3	5.3.1 The Steady-State Creep Potential	153			
			160			
		5.3.2 Example for Rock Salt 5.3.3 Triaxial Generalization of Uniaxial Creep Laws for Steady State	163			
			167			
	5.4	5.3.4 The Creep Formula				
	5.4	Rock Anisotropy	169			
		5.4.1 Introduction	169			
		5.4.2 Macroscopic Failure Criteria for Anisotropic Rocks	169			
		5.4.3 Induced Anisotropy	179			

6	Damage and Creep Failure			185	
		Experimental Background		185	
	6.2	5.2 Acoustic Emission			
	6.3	Damage Estimation by Dynamic F	Procedures	192	
	6.4	Energetic Criteria for Damage		196	
	6.5	Creep Failure		204	
	6.6	Historical Note		207	
7	Mining and Petroleum Engineering Problems				
	7.1	7.1 Stresses in situ			
	7.2	2 Initial Conditions			
	7.3	Boundary Conditions		213	
8	Closure and Failure of Vertical Caverns and Boreholes				
		8.1 Formulation of the Problem			
	8.2	2 Convergence, Dilatancy, Damage and Stability			
		.3 A More General Primary Stress State			
		8.4 Stress Variation During Creep			
		Stability and Failure of Wellbore of	r Cylindrical Caverns	232	
9	Creep, Closure and Damage of Horizontal Tunnels				
	9.1 Formulation of the Problem				
	9.2	9.2 Domains of Dilatancy, Compressibility and Failure Around the Tunnel			
		9.3 Tunnel Convergence and Creep Failure			
10	Creep, Damage and Failure Around Rectangular-Like				
	Galleries or Caverns				
	10.1	Formulation of the Problem		252	
18			lure Around a Gallery		
		Wide Rectangular-Like Gallery	molesursonemi	260	
			How to Choose the Most Appropriate	282	
			Corngressibility Dilarancy Boundary	291	
		Conclusions		296	
	10.0			3.1	
T.	Refe	erences	astoV Issherelli bas anasubne	201	
				301	