Elementary Mechanics of Soil Behaviour

Saturated Remoulded Soils

by

JEAN BIAREZ & PIERRE-YVES HICHER Ecole Centrale de Paris, Cedex, France

A.A. BALKEMA / ROTTERDAM / BROOKFIELD /1994

Contents

INTRODUCTION	IX
LIST OF SYMBOLS	ХШ
1 MECHANICS OF PARTICUL AR MEDIA	13.0 13.5
1 1 General equations	1
1.2 Laws of behaviour	2 NEVLOPPI
1.2 Laws of behaviour of the material of the particles	
1.2.7 Behaviour of contact between particles	2
1.2.2 Behaviour of contact between particles	2
1.2.5 Denaviour as affected by the initialogy	2
1.3 1 Geometry of the particles	and 6.C 4
1.3.2 Geometry of the arrangement of the particles	(BN) 4-2012
1.5.2 Geometry of the analgement of the particles	104 C.C.L.4
spheres under a force, f	4
2 CONTINUITY HYPOTHESIS	1001
2.1 Stress	5
2.2 Strain	5
2.3 Calculation of constitutive laws for a continuum based on th	e
properties of a discontinuum composed of spheres	7
2.3.1 Calculation of the average stress p' based on the force	. <i>f</i> .
between the particles	.,, 7
2.3.2 Calculation of the interaction of two spheres for an	1 1 200
arrangement defined by $G(e)$ under an average stress	<i>p</i> ′ 8
2.3.3 The deformation of a continuous medium requires the	e strain
$\varepsilon = w/R$	8
2.4 Behaviour of idealised continuous media	10
3 COMPRESSION TESTS $\sigma'_3/\sigma'_1 = \text{CONSTANT}$	1.7 11
3.1 Isotropic compression $(\sigma'_1 = \sigma'_2 = \sigma'_3 = p')$	11 7.2 644

VI Elementary mechanics of soil behaviour

	3.1.1 Elastic behaviour	11
	3.1.2 Plastic behaviour	13
	3.2 Stress paths with $\sigma'_3/\sigma'_1 = \kappa = \text{constant}$	14
4	NORMALLY CONSOLIDATED BEHAVIOUR (10 kPa to 1 MPa)) 16
	4.1 Normally consolidated paths	16
	4.2 Triaxial conventional path ($\sigma'_2 = \sigma'_3 = \text{constant}$)	16
	4.3 Triaxial deviatoric path ($p' = \text{constant}$)	23
	4.4 Surface or normally consolidated behaviour	26
	4.5 Constant volume path: Undrained triaxial test	26
	4.5.1 Effect of large stresses on M and C_c	30
	4.6 Small deformations ($\varepsilon < 10^{-2}$)	30
	4.6.1 Secant modulus	30
	4.6.2 Nonlinear elasticity (role of σ_3 or p')	32
	4.6.3 Moduli derived from the hyperbolic law	32
	4.6.4 Comparison of the oedometer and triaxial test path	38
5	OVER CONSOLIDATED BEHAVIOUR	39
2	5.1 Small strains ($\varepsilon < 10^{-2}$)	39
	5.2 Pseudo elastic volumetric limit	40
	5.2.1 Overconsolidation ratio less than 2	40
	5.2.2 Overconsolidation ratio greater than 2	43
	5.3 Stress-strain relationship	49
	5.4 Maximum resistance in the stress plane $q':p'$	53
	5.5 Perfect plasticity	58
	5.6 Localisation	58
	5.7 Path without volume change – The consolidated undrained test (CIU)	69
6	OEDOMETRIC PATH c = c = 0	73
0	6.1. Normally consolidated (NC) $(\sigma' > \sigma')$	73
	6.2 Over consolidated $(DC)(\sigma' < \sigma')$	73
	6.3 Calculation of settlement	75
	64 Behaviour of sands	78
	6.5 'Deformable' cylinder	79
7	CLASSIFICATION OF AND CORPELATIONS BETWEEN	
'	THE DADAMETEDS	81
	7.1 Method of classification	81
	7.1.1 Classification of laboratory tests	81
	7.1.2 Classification of in situ tests	85
	7.2 Analysis of test data	02
	7.2.1 Properties of the particles (Class I)	92

1	the second second
ontents	VII
Contento	Y 11

	7.2.2 Arrangement of the particles	93
	7.2.3 Analysis based on the oedometer test	95
	7.2.4 Analysis based on the triaxial test	98
8	THREE DIMENSIONAL BEHAVIOUR – EFFECT OF THE	
•	INTERMEDIATE PRINCIPAL STRESS	107
	8.1 Proportional paths: Tests with b_{σ} constant	108
	8.2 Relationships between stress and strain	108
	8.3 Development of principal strains	111
	8.4 Maximum strength	114
9	ANISOTROPY	122
	9.1 Geometric anisotropy	123
	9.2 Mechanical anisotropy	124
	9.3 Three dimensional tests along the axes of orthotropy	128
	9.4 Tests other than those on the orthotropic axis	135
	9.4.1 Tests with the principal stress axes directions fixed	135
	9.4.2 Influence of rotation of the principal stress axis	136
10	CYCLIC BEHAVIOUR OF SOILS	142
	10.1 Isotropic stress paths	142
	10.2 Triaxial drained paths	142
	10.2.1 One-way cyclic tests	142
	10.2.2 Two-way cyclic triaxial tests	144
	10.3 Influence of rotating principal axes	146
	10.4 Undrained triaxial tests	150
AF	PPENDICES	
Ap	pendix to Chapter 1, From grains to a continuum	157
Ap	ppendix to Chapter 2, On the kinematics of deformable media:	
	With and without rotation	165
Ap	ppendix 1 to Chapter 7, Introduction to the properties of fine soils in situ	169
Ap	opendix 2 to Chapter 7, Correlations for rockfill dams	183
Ap	opendix 3 to Chapter 7, Behaviour of rockfill dams	192
Ge	eneral appendix, Role of inelastic deformations of the particles	200
RE	FERENCES	205