PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON PRE-FAILURE DEFORMATION CHARACTERISTICS OF GEOMATERIALS SAPPORO / JAPAN / 12-14 SEPTEMBER 1994

Pre-failure Deformation of Geomaterials

SATORU SHIBUYA & TOSHIYUKI MITACHI

Hokkaido University, Sapporo, Japan

SEIICHI MIURA

Muroran Institute of Technology, Muroran, Japan

VOLUME 1

Under the auspices of the Japanese Society of Soil Mechanics and Foundation Engineering

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1994

Table of contents

Measurement of shear deformation of geomaterials – Laboratory tests	
Stress states affecting elastic deformation moduli of geomaterials Y. Kohata, F. Tatsuoka, J. Dong, S. Teachavorasinskun & K. Mizumoto	3
Small strain measurements during triaxial tests: Many problems, some solutions D.C.F. Lo Presti, O. Pallara, D. Costanzo & M. Impavido	11
Deformation characteristics of gravels in triaxial compression tests and cyclic triaxial tests J.Dong, K.Nakamura, F.Tatsuoka & Y.Kohata	17
Some observations on the static and dynamic shear stiffness of Ham River sand E. Porovic & R. J. Jardine	25
Cyclic deformation characteristics of sands in triaxial and torsional tests S.Yamashita & S.Toki	31
Dynamic properties of sand at low confining pressure M. Kanatani, K. Nishi & Y.Tanaka	37
Deformation characteristics of undisturbed riverbed gravel by in situ freezing sampling method <i>N.Yasuda, N.Ohta & A.Nakamura</i>	41
Shear modulus and damping ratio of gravelly soils measured by several methods <i>Y.Tanaka, K. Kudo, K. Nishi & T.Okamoto</i>	47
Deformational characteristics of uncemented carbonate Quiou sand V. Fioravante, R. Capoferri, O. Hameury & M. Jamiolkowski	55
Measurement of shear wave velocity of sand before liquefaction and during cyclic mobility <i>F.Tanizawa</i> , <i>S.Teachavorasinskun</i> , <i>J.Yamaguchi</i> , <i>T.Sueoka & S.Goto</i>	63
A method to minimize membrane penetration effects in undrained triaxial tests on granular soils S. Kawamura & S. Miura	69
Effects of the cyclic prestraining on dilatancy characteristics and liquefaction strength of sand <i>S.Teachavorasinskun, F.Tatsuoka & D.C.F.Lo Presti</i>	75

Cyclic behavior of saturated sand under drainage control Y.Yamada, M.Sawaguchi & S.Igarashi	81
Undrained cyclic shear strength and deformation of crushable soil M. Hyodo, N. Yasufuku, H. Murata, A. F. L. Hyde & T. Okabayashi	87
Undrained cyclic loading of a cemented sand C.K.Yeoh & D.W.Airey	95
Evaluation of clay disturbance due to dynamic loads H. Matsuda, Y. Nakagawa & I. Ishii	101
Direct shear and direct simple shear test results on a Japanese marine clay Y.X.Tang, H. Hanzawa & K.Yasuhara	107
Undrained shear characteristics of a soft clay after cyclic loading N. Horii, Y.Toyosawa, S.Tamate & S.K.Ampadu	113
Shear deformation characteristics of Hiroshima clay cured at high temperature T. Moriwaki, K. Yashima & M. Nago	119
Deformation of clayey sand during saturation, consolidation and undrained shear process J. Kuwano, H. Hashizume & K. Takahara	125
Shearing behaviour of cohesive soil subjected to decrease in mean effective stress <i>M. Katagiri & G. Imai</i>	131
Multi-stage triaxial (static and cyclic) test of marine clay FTu & S.Ma	137
Stress-strain relationship of lightly-cemented sand in tension and compression R. N. Dass, B. M. Das, S. C. Yen, V. K. Puri & M.A. Wright	143
Volume change characteristics of discontinuous rock A. Fahimifar	149
Constant normal stiffness testing of soft rock-concrete interfaces J.P.Seidel, C.M.Haberfield & I.W.Johnston	155
Measurement of shear deformation of geomaterials – Field tests	
The effects of measure accuracy in the interpretation of dynamic tests on saturated soils A.Gajo & L.Mongiovì	163
Shear wave anisotropy in Edogawa Pleistocene deposit S. Nishio & Y. Katsura	169
Change of S-wave velocity of foundation ground just beneath a building during construction process K. Kudo, T. Kokusho, T. Okamoto, Y. Tanaka, T. Kawai, Y. Sawada, K. Suzuki & H. Yajima	175
Strain-dependency of ground stiffness based on measured ground settlement N.Akino & M.Sahara	181
Small strain stiffness of Pleistocene clays in triaxial compression J.N.Mukabi, F.Tatsuoka, Y.Kohata, T.Tsuchida & N.Akino	189

A study on appropriate numbers of cyclic shear tests for seismic response analyses S.Yasuda, T.Masuda, H.Nagase, S.Oda & I.Morimoto	197
Deformation characteristics of soft rock by pressuremeter test K.Tani, K.Nishi & T.Okamoto	203
Evaluation of deformation characteristics of soft rock using in situ pressuremeter test <i>M. Fujitani, M. Shimada, Y. Koike & I. Furuta</i>	207
In situ measurement of shear moduli of soils and its evaluation Y. Koga, O. Matsuo & N. Sugawara	213
Measuring the small-strain behaviour of sand in situ M. Fahey & A.A. Soliman	217
Determination of deformability of Shirasu from some in situ tests R. Fukagawa, R. Kitamura, S. Fukuda & Y.Tanaka	223
Measurement of stiffness of soils and weak rocks using small strain laboratory testing and field geophysics C.R. I. Clayton, M.A. Gordon & M.C. Matthews	229
Shear modulus of soft clay measured by various kinds of tests H.Tanaka, M.Tanaka, H.Iguchi & K.Nishida	235
Deformation characteristics of undisturbed silty-sand from triaxial compression and in-situ tests and full-scale behavior K. Miyazaki, R.A. Hameed, Y. Sato, Y. Kohata & F. Tatsuoka	241
Secant Young's modulus from N-value or C _u considering strain levels <i>H. Hirayama</i>	247
Acoustic emission techniques for assessing deformations in soils N. Dixon, R. Hill & J. Kavanagh	253
Photoelastic modelling of the vane shear test M. Mahmoud	259
Effect of relative density and crushability of sands on pile end bearing characteristics A.F.L. Hyde, N.Yasufuku & M. Hyodo	265
Modelling of shear deformation of geomaterials – Identification of material properties	
The dependence of small strain stiffness on stress state and history for fine grained soils: The example of Vallericca clay S. Rampello, F. Silvestri & G. Viggiani	273
Small strain behaviour of a gravel along some triaxial stress paths A. Flora, G. L. Jiang, Y. Kohata & F. Tatsuoka	279
Deformation characteristics of iron and steel slags and crushed stone as base-course materials M. Nishi, N. Yoshida, S. Hatakeyama & T. Tsujimoto	287

Pseudo-elastic shear modulus of a Holocene clay deposit S. Shibuya, M. Nakajima & T. Hosono	293
Pre-failure deformation characteristics of contaminated fine-grained soil <i>H-Y.Fang</i>	299
Contraction of soil subjected to traffic-type stress application I.Towhata, N. Harada, M. Sunaga & Y. Kawasaki	305
Dilatancy characteristics of clayey soil under principal axes rotation H.Akagi & J.Saitoh	311
Yielding of a weakly bonded artificial soil V. Malandraki & D.G. Toll	315
Anisotropic behavior of sands with similar grading in plane strain compression T.B.S. Pradhan, R. Kamata & G. Imai	321
Deformation-strength anisotropy and particle crushing of volcanic coarse grained soils S. Miura, K. Yagi & S. Kawamura	329
Influence of freezing and thawing on volume change of unsaturated soils <i>T.Nishimura & S.Ogawa</i>	335
Deformation of sand in direct shear box test S.Tamate, S.Shibuya & T.Mitachi	341
Influence of stress path on plane strain deformation characteristics of sand S. Shimobe & T. Miyamori	347
The behaviour of sandy soil with a stress history of pre-shearing above or below phase transformation line <i>K.Shirakawa & Y.Tanaka</i>	353
Description of anisotropy of deformation in glacilacustrine clays (from Baltic cliffs) using SEM analysis <i>R.Czajka</i>	359
Study on the stress-dilatancy behaviour of sand by strain path testing J.Chu	365
Study of microstructure of undrained clay X. Bai & P. Smart	371
A mechanical evaluation of the structure including finite length cracks T.Seiki, GC.Jeong, Y.Ichikawa & Ö.Aydan	375
Micro-damage propagation and deformation characteristics in granitic rock under stress GC. Jeong, T. Seiki, Y. Kimura & Y. Ichikawa	381
An experimental study on deformation and kinking characteristics in layered rock Ö.Aydan, GC. Jeong, T. Seiki & Y. Ichikawa	387
The study of macroporous soils under rigid foundations by X-ray Computed Tomography Technique A. Chirica	393

Modelling of shear deformation of geomaterials – Modelling of material properties	
Effect of density state on the strength and deformation of sands <i>y</i> . <i>Sheng & M. F. Randolph</i>	401
Deformation-strength properties of intermediate soils under triaxial conditions K.Omine, H.Ochiai & N.Yoshida	407
A non-coaxial elasto-viscoplastic constitutive model for clay <i>F.Oka</i>	415
Analysis of true triaxial and directional shear cell tests on Leighton Buzzard Sand T. Nakai & D. Muir Wood	419
Shear deformation characteristics of cemented sands in 3-D stresses H. Matsuoka & D.A. Sun	427
An elasto-plastic model for frictional and cohesive materials D.A. Sun & H. Matsuoka	433
Suction effect on unsaturated soil evaluated by 'bonding stress' S. Kato & H. Matsuoka	439
An isotropic hardening model for sand considering the bonding effects N.Yasufuku, Y. Nakata, M. Hyodo, H. Murata & A. Nishikawa	445
Pore pressure response of an anisotropic shale during loading in an undrained condition T.Aoki, C. P.Tan & W.E. Bamford	451
An isotropic bounding surface model for undrained cyclic behavior of sand: Limitation and modification <i>Y.Tobita & N.Yoshida</i>	457
A simplified practical stress-strain model in multi-dimensional analysis S. Tsujino, N. Yoshida & S. Yasuda	463
Cyclic plasticity models for geomaterials based on non-linear kinematic hardening theory A.Yashima, F.Oka & M. Kato	469
A stress parameter for the behavior of clay under cyclic loading S. Murakami, H. Ochiai, S. Hayashi & T. Umezaki	477
Post-cyclic undrained stiffness for clays K.Yasuhara, K.Satoh & A.F.L.Hyde	483
Small to large strain level behaviors of sand by elasto-plastic model T. Sueoka, S. Teachavorasinskun & F. Tanizawa	491
The state function of granular materials and its use <i>N.Moroto</i>	499
Energy-dissipating capacity of soils M.P.Luong	503

٩.

A new approach for soil mechanics based on the microscopic consideration by the probability theory <i>R. Kitamura</i>	509
3D-DEM analysis of shear deformation of a saturated granular material considering the interaction between solid particles and pore fluid <i>M. Kawamura, H. Hajouta & Y. Ohashi</i>	513
Post yield modeling of compression for Pleistocene clays and its application to finite element analysis M.Mimura, T.Shibata & K.Watanabe	517
A study of deformation and failure of compacted sand/bentonite mixture soil foundation by model test and numerical analysis <i>M.Nishigaki</i> , <i>Y.Sun & I.Kono</i>	523
FEM simulation of footing settlement for stiff geomaterials M.S.A. Siddiquee, F.Tatsuoka, E. Hoque, T.Tsubouchi, O.Yoshida, S.Yamamoto & T.Tanaka	531
Non-linear FEM analyses of pressuremeter tests in a sedimentary soft rock T.Tsubouchi, K.Ochi & F.Tatsuoka	539
Prediction, performance and design	
Deformation-pore pressure behaviours measured and analyzed for a trial embankment H. Miki, H. Kohashi, H.Asada & K.Tsuji	547
Discussions on the behavior of embankment on very soft ground K. Miyabe, S. Kisaichi & M. Kondo	553
Back analysis of a trial loading on soft clay A.W.Bowey & D.Muir Wood	559
Test embankment on supersoft foundation for airport construction S. Hitachi, T. Katayama, H. Yamamoto, N. Ikeda, H. Nakanodo, Y. Sutoh, Y. Imaoka & S. Matsuda	567
Deformation analysis of peaty soft ground with Cam Clay model H. Hayashi, J. Nishikawa, H. Odajima, T. Mitachi & F. Fukuda	575
Prediction of settlement on peaty soft deposits using extended Kalman filter M. Hoshiya, K. Itabashi & A. Sutoh	583
Soil modeling and prediction of deep excavation behavior A J.Whittle & Y.M.A. Hashash	589
Effects of modelling wall installation on multi-staged excavations in stiff clays CWW.Ng	595
Deformation characteristics of sedimentary soft rock evaluated by full-scale excavation K.Ochi, T.Tsubouchi & F.Tatsuoka	601
Field monitoring results and deformation analysis by finite element method on large scale cut-and-cover road tunnels <i>H.Ueki, S.Moue, S.Kobayashi & T.Yaoyama</i>	609

The influence of recent stress history on ground movements around tunnels S. E. Stallebrass, V. Jovičić & R. N. Taylor	615
Deformation characteristics of soft rock layers bearing the Akashi-Kaikyo Bridge tower foundations K.Yamaguchi, K.Yamagishi & S.Nasu	621
Lateral flow affecting a bridge constructed at the canal <i>S.Wano, M.Arai & F.Kudo</i>	627
Permanent settlement of shallow foundation on sand due to cyclic loading B.Yeo, B.M. Das, S.C.Yen & V.K. Puri	635
Analysis techniques of mat foundation: A comparative study S.M.Seraj & T.R. Hossain	641
Tilt correction of a multistoried building P.K.De	647
Shear wave velocity based upon vertical field strong ground motion array records and the velocity change with intensity of the ground motion <i>Y.Iwasaki</i>	651
Soil/rock deformation properties obtained from forced vibration tests on large-scale structures/foundations <i>T.Ueshima & K. Hirata</i>	657
Stability analysis and model test for seismic displacement of a slope T.Sawada, S.G.Nomachi & W.F.Chen	665
Shear stiffness effect on reinforced embankment deformations <i>M.R. Madhav & N. Miura</i>	673
Field observation and FEM analysis on behavior of revetment built with two rows of steel-pipe piles on soft foundation N. Kobayashi, S. Yoshizawa, S. Iijima, K. Mitsuishi, M. Taki & N. Fukuda	679
Deformation characteristics of foam-mixed solidified soil Y. Matsuda, N. Mihara, J. Nishikawa, M. Kuwabara, M. Murata & F. Kusakabe	687
Deformation of dry sand in laboratory model tests with an oblique passive wall <i>Y. Kobayashi</i>	693

Author index

697