

GEOTECHNICAL ENGINEERING OF EMBANKMENT DAMS

ROBIN FELL

Professor of Civil Engineering School of Civil Engineering, University of New South Wales, Sydney

PATRICK MacGREGOR

Chief Engineering Geologist Snowy Mountains Engineering Corporation, Sydney

DAVID STAPLEDON

Geotechnical Consultant & Professor of Applied Geology University of South Australia, Adelaide

A.A. BALKEMA / ROTTERDAM / BROOKFIELD /1992

Contents

PREFACE	IX
1 EMBANKMENT DAMS, THEIR ZONING AND SELEC	TION 1
1.1 Types of embankment dams, their advantages and limit	
1.2 Zoning of embankment dams, neh utvallages and minit	
1.3 Selection of embankment type	17
no occession of enteament type	(08 to Common reach works
2 WEATHERING PROCESSES AND PROFILES IN VALI	EYS 23
2.1 High horizontal stresses in rock	DMITTER VICTARONA 23
2.2 Weathering of rocks	alice half and a series 1 33
2.3 Chemical alteration	48
2.4 Rapid weathering	49
2.5 Classification of weathered rock	51
2.6 Landsliding	101140H10892 M012 M 55
3 GEOTECHNICAL QUESTIONS ASSOCIATED WITH V	ARIOUS
GEOLOGICAL ENVIRONMENTS	ing a Set to home unit we per 1 73
3.1 Granitic rocks	100 million - 73
3.2 Volcanic rocks (intrusive and flow)	filling estimations to set 75
3.3 Pyroclastics	84
3.4 Schistose rocks	
3.5 Mudrocks	SRUDATOMPISCIE 96
3.6 Sandstones and related sedimentary rocks	103
	modif book at more imigen 10 107
3.8 Alluvial soils	in mowled politiciality E126
	no yels to multiplitend 1 + 130
3.10 Laterites and lateritic weathering profiles	and require an investigant 134
3.11 Glacial deposits and landforms	137
4 PLANNING, CONDUCTING AND REPORTING OF GE	OTECHNICAL
INVESTIGATIONS	154
4.1 The need to ask the right questions	AREN MINDER NO 2MA 154
4.2 Geotechnical input at various stages of project developr	

VI Geotechnical engineering of embankment dams

4	.3 An iterative approach to the investigations	157
	.4 Progression from regional to local studies	160
4	.5 Reporting	161
4	.6 Timing and funding of geotechnical studies	161
	7 The site investigation team	162
5 S	ITE INVESTIGATION TECHNIQUES	164
5	.1 Topographic mapping and survey	164
5	.2 Interpretation of satellite images and aerial photographs	165
5	.3 Geotechnical mapping	170
5	.4 Geophysical methods	174
	.5 Test pits and trenches	180
5	.6 Adits and shafts	183
5	.7 Drill holes	183
	.8 Sampling	194
	.9 In situ testing	
	.10 Groundwater	
	.11 In situ permeability tests on soil	
	.12 In situ permeability tests in rock	
5	.13 Common errors and deficiencies in geotechnical investigation	210
	ABORATORY TESTING TECHNIQUES AND THEIR LIMITATIONS	215
	5.1 Shear strength of soils	
	5.2 Shear strength of rock	
6	3.3 Permeability of soils	
7 I	DESIGN, SPECIFICATION AND CONSTRUCTION OF FILTERS	253
7	1 Basic requirements for filters	253
	2.2 Filter design methods	255
	3 Specification of size and durability of filters	267
	.4 Dimensions, placement and compaction of filters	
7	1.5 Use of geotextiles as filters in dams	277
	CLAY MINERALOGY, SOIL PROPERTIES, DISPERSIVE SOILS	
A	AND PIPING FAILURE	288
	8.1 Introduction	288
	3.2 Clay minerals and their structure	288
	3.3 Interaction between water and clay minerals	293
	3.4 Identification of clay minerals	300
	8.5 Engineering properties of clay soils related to the types of clay minerals	
		303
	3.6 Identification of dispersive soils	306
8	3.7 Use of dispersive soils in embankment dams	315
	DAMS ON HIGHLY PERMEABLE SOIL FOUNDATIONS	318
9	0.1 General description of the special problems	318

	9.2 Control of erosion and 'blowup' or liquefaction of the foundation	320
	9.3 Control of underseepage by cutoffs	325
10	STABILITY ANALYSIS	342
10	10.1 General principles	342
	10.2 Estimation of pore pressure	343
	10.3 Analysis of stability	356
11	FOUNDATION PREPARATION AND CLEANUP	359
	11.1 General requirements	359
	11.2 General foundation preparation	359
	11.3 Cutoff foundation	361
	11.4 Width and batter slopes for cutoff	368
	11.5 Selection of cutoff foundation criteria	369
	11.6 Slope modification and seam treatment	370
12	FOUNDATION GROUTING	377
	12.1 General concepts of grouting dam foundations	377
	12.2 Grouting design – Cement grout	378
	12.3 Some practical aspects of grouting with cement	401
	12.4 Chemical grouts in dam engineering	413
13	EMBANKMENT DETAILS	425
	13.1 Freeboard	425
	13.2 Embankment crest details	431
	13.3 Embankment dimensioning and tolerances	433
	13.4 Slope protection	435
	13.5 Conduits through embankments	444
	13.6 Interface between earthfill and concrete structures	447
	13.7 Flood control structures	448
	13.8 Design of dams for overtopping during construction	450
14	SPECIFICATION AND QUALITY CONTROL OF EARTHFILL	
	AND ROCKFILL	457
	14.1 Specification of rockfill	457
	14.2 Specification of earthfill	461
	14.3 Quality control	467
	14.4 Testing of rockfill	472
	14.5 Testing of earthfill	475
15	DESIGN OF DAMS TO WITHSTAND EARTHQUAKES	478
	15.1 Effect of earthquake on embankment dams	478
	15.2 Assessment of design earthquake	479
	15.3 Liquefaction of dam embankments and foundations	488
	15.4 Evaluation of liquefaction potential	496
	15.5 Analysis of stability and deformations	503
	15.6 Design for earthquake	513

16 CONCRETE FACE ROCKFILL DAMS	519
16.1 General arrangement and reasons for selecting this type of dam	519
16.2 Rockfill zones and their properties	523
16.3 Concrete face	534
16.4 Construction aspects	547
16.5 Some non-standard design features	550
17 MINE AND INDUSTRIAL TAILINGS DAMS	555
17.1 General	555
17.2 Tailings and their properties	555
17.3 Methods of tailings discharge and water recovery	565
17.4 Prediction of tailings properties	570
17.5 Methods of construction of tailings 'dams'	580
17.6 Seepage from tailings dams and its control	595
18 MONITORING AND SURVEILLANCE OF EMBANKMENT DAMS	607
18.1 What is monitoring and surveillance?	607
18.2 Why undertake monitoring and surveillance?	608
18.3 What monitoring is required?	613
18.4 How is the monitoring done?	620
18.5 How often should monitoring be carried out?	
REFERENCES	647
SUBJECT INDEX	
Embénieura dimensioning and tolenaucas	
INCATION AND OUVERT CONTROL OF BARTHETIT.	
Report of the second	
Testing of earingil excession eduction and a 172	