ROCK SLOPE STABILITY ANALYSIS

GIAN PAOLO GIANI

Technical University of Turin

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/1992

Contents

PR	EFA	CE TO REVISED ENGLISH EDITION	X	Ι
1	PRO	DBLEM DEFINITION AND LANDSLIDE CLASSIFICATION		1
	1.1	Natural slopes		1
		Artificial slopes		3
		1.2.1 Excavation slopes		3
		1.2.2 Embankments and dams		4
		1.2.3 Wastes		5
	1.3	Aim of a slope stability analysis		7
		Classification of slope movements		8
		Slope movement and analysis types	1	0
		1.5.1 Falls	1	0
		1.5.2 Topples	1	1
		1.5.3 Slides	1	2
		1.5.4 Lateral spreads	2	1
		1.5.5 Flows	2	2
		1.5.6 Complex movements	2	7
		330 San		
2	RO	CK SLOPE ENGINEERING	2	9
	2.1	Introduction	2	9
	2.2	Problem definition	2	9
	2.3	Stability analysis methods	3	9
		Static and dynamic equilibrium equations	4	0
		Safety factor and limit equilibrium method	4	2
		Effect of water pressure in rock discontinuities	4	4
		Principal factors affecting rock slope stability analysis	4	5

VI Rock slope stability analysis

3	GEC	GEOMECHANICAL CHARACTERIZATION OF				
	DISC	CONTI	NUITIES		47	
	3.1	Discor	ntinuity types		47	
		3.1.1	Bedding planes		47	
		3.1.2	Cleavage planes		47	
		3.1.3	Schistosities		50	
		3.1.4	Folds		50	
		3.1.5	Faults		51	
		3.1.6	Joints		52	
	3.2	Rock s	slope discontinuity classification		53	
	3.3	Rock f	feature description methods		55	
	3.4	Orient	ation		56	
		3.4.1	Angle definition		56	
		3.4.2	Spherical projections		57	
		3.4.3	Equal-area projection		58	
		3.4.4	Discontinuity orientation survey analysis and	l interpretation	64	
		3.4.5	Statistical interpretation of pole contour diag	rams	68	
	3.5	Spacir	ng		73	
		1000	Definitions, measurements and scopes		73	
			Precision of the mean spacing and spacing di	stribution	74	
	3.6	Persist	tence definitions, scopes and measurements		78	
	3.7	Rough	nness		85	
		3.7.1	Definitions and scope		85	
			Measurement and presentation of results		85	
	3.8	Wall s	trength		88	
	3.9	Aperti	ure		91	
	3.10	Filling			92	
	3.11 Seepage					
		3.12 Number of sets				
	3.13 Block size					
	3.14 Discontinuity description using drill core and drill hole analysis					
	3.15 Geophysical surveys					
		88	•			
я	CHEAD CEDENICEH				99	
4	SHEAR STRENGTH				77	
	4.1	Basic o	concepts		99	
		4.1.1	Intact rock strength envelope		99	
		4.1.2	Types of strength criterion		99	
		4.1.3	Coulomb shear strength criterion		101	
			discontinuity shear strength		103	
		4.2.1	Planar discontinuity surfaces		103	
		4.2.2	Inclined discontinuity surfaces		105	

			Contents	V 11
		4.2.3	Multiple inclined discontinuity surfaces	106
		4.2.4	Ladanyi & Archambault criterion	108
		4.2.5	Rough discontinuity surfaces	111
		4.2.6	Barton criterion	113
		4.2.7	Scale effects	116
		4.2.8	Joint Roughness Coefficient measurements from large	
			scale index tests	117
		4.2.9	Statistical methods for JRC determination and shear	
			behaviour prediction	123
		4.2.10	Fractal characterization of joint surface roughness for	
			estimating shear strength	129
		4.2.11	Geostatistical operators applied to the rock joint shear	
			strength prediction	132
		4.2.12	Influence of the wall discontinuity interlock level on the	
			shear resistance	134
		4.2.13	Filled discontinuities	138
		4.2.14	Discontinuity shear behaviour under dynamic conditions	139
		4.2.15	Concluding remarks on joint shear resistance	141
	4.3	Shear s	strength of rock mass	141
5	GRO	UNDV	WATER FLOW IN ROCK MASSES	146
	5.1	Introdu	uction	146
	5.2	Basic o	concepts	146
	5.3	Flow i	n discontinuous media	148
	5.4	Flow i	n porous media	150
	5.5	Rock r	mass flow models	151
	5.6	Hydra	ulic conductivity of a single discontinuity	153
	5.7	Hydra	ulic conductivity of a discontinuity set	154
	5.8	Hydra	ulic characterization of discontinuous rock masses	156
		5.8.1	Practical example of pumping tests in boreholes	159
	5.9	Hydra	ulic characterization of equivalent continuous masses	162
	5.10	Mathe	matical models	163
		5.10.1	Single fracture models	163
		5.10.2	Joint network models	165
6 GE		OMECHANICAL MODEL		167
	6.1	Introdu	uction	167
	6.2		oint system models	167
	0.2		Orthogonal model	167
			Unbounded random plane model	169
		0.2.2	onoounded random plane model	109

VIII Rock slope stability analysis

		6.2.3 Co-planar polygonal model	171
		6.2.4 Mosaic block tessellation models	174
		6.2.5 Poisson disk model	174
		6.2.6 Other joint modelling approaches	176
		6.2.7 Concluding remarks on the joint system modelling	
		techniques	176
	6.3	Potential instability phenomena identification	177
		Design sectors	179
		6.4.1 Statistical models	180
		6.4.2 Geostatistical models	180
	6.5	Application example	185
7	RO	CKFALLS, TOPPLES AND BUCKLES	191
	7 1	Rockfall	191
	7.1		191
		7.1.1 Analytical formulations of rockfall	193
	7.2	7.1.2 Rockfall movement analysis	208
	1.2	Toppling	208
		7.2.1 Toppling mechanisms	215
		7.2.2 Single block toppling limit equilibrium	218
	72	7.2.3 A block system toppling analysis	222
	1.5	Rock buckling	222
		7.3.1 Flexural buckling of plane slabs	
		7.3.2 Three hinge beam models for plane slopes	224
		7.3.3 Three hinge buckling of curved slopes	226
8	SLI	DING PHENOMENA ANALYSIS	229
	8.1	Sliding instability types	229
	8.2	Simplified methods	229
		8.2.1 Plane sliding	231
		8.2.2 Sliding on a two plane intersection line	242
	8.3	Stability analysis using vector methods	252
		8.3.1 Equations of lines and planes	253
		8.3.2 Volumes, areas, angles and forces	256
		8.3.3 Warburton procedure for stability analysis of a polyhedral	
		rock block	259
		8.3.4 Block theory	264
	8.4	Probabilistic methods	281
		8.4.1 Introduction	281
		8.4.2 Stability indexes	282
		8.4.3 Monte Carlo method	283
		9.4.4 Decembly of braint actimate method	295

		Contents	IX
		8.4.5 Application example	286
		8.4.6 Conditioned probability and Bayes theorem	287
		8.4.7 Application example	288
		8.4.8 Fuzzy set theory	289
		8.4.9 Rock slope stability analysis application	290
	8.5	Concluding remarks on the graphical methods in rock slope	
	0.0	stability analysis	292
9	DYN	NAMIC EQUILIBRIUM EQUATION METHOD	295
		Method of analysis	295
		Distinct Element Method	295
	2.4	9.2.1 Introduction	295
		9.2.2 Theoretical formulation of the method	296
		9.2.3 Block deformability	297
		9.2.4 Discontinuity behaviour model	298
		9.2.5 Motion equations	301
		9.2.6 Calculation sequence	302
		9.2.7 Static analysis	303
		9.2.8 Boundary element representation for zones distant from	
		the examined area	304
		9.2.9 Coupled problems	304
		9.2.10 Dynamic analysis	306
		9.2.11 Other main DEM applications	306
	9.3	Seismic analysis	307
		9.3.1 Pseudo-static method	307
		9.3.2 Overall displacement method	308
10	STA	BILIZATION AND PROTECTION METHODS	315
	10.1	Introduction	315
	10.2	Excavation and geometrical slope parameter design	315
		10.2.1 Rock sliding along discontinuity planes	317
		10.2.2 Rock slope toppling and sliding	322
		10.2.3 Circular failure in soft or weak rock	322
		10.2.4 Secondary toppling failure	323
	10.3	Drainage measures	324
		Support and reinforcement systems	329
		10.4.1 Active reinforcements	333
		10.4.2 Passive reinforcements	337
	10.5	Methods of protection	340
RE	EFER	ENCES	347