THE STABILITY OF SLOPES

Second edition

E.N. BROMHEAD
Professor of Geotechnical Engineering
Faculty of Engineering
Kingston Polytechnic
Kingston upon Thames

BLACKIE ACADEMIC & PROFESSIONAL

An Imprint of Chapman & Hall

London · Glasgow · New York · Tokyo · Melbourne · Madras

Contents

1	An i	ntroduction to slope instability	1
	1.1	Slope instability and landslides	
	1.2	Classification for mass movement: falls	2
	1.3	Classification for mass movement: slides	7
	1.4	Classification for mass movement: flows	18
	1.5	Cost and frequency of occurrence: failures of natural slopes and of man-made slopes	19
	1.6	Some disasters and their impact on knowledge	22
	1.7	History of the understanding of slope stability	23
	1.8	Previous work	28
	1.9	Outline of the structure of the book	29
2	Nati	iral slopes	31
	2.1	Slopes showing a response to present-day conditions	31
	2.2	Examples of slopes preserving evidence of former conditions	35
	2.3	The impact of Pleistocene conditions on slope development	36
	2.4	Types of failure and the importance of geological structure	
	2.5	Free degradation, colluvial and scree slopes: the abandoned cliff	46 53
	2.6	Toppling failures and their occurrence	59
	2.7	Rockslides, avalanches, and other rapid mass movements	60
	2.8	Identifying and locating unstable slopes	62
	2.9	Dating mass movement	63
3	Fund	damental properties of soil and rocks	67
	3.1	Stress-strain properties of soils and rocks	67
	3.2	Influence of effective stress on shear strength	69
9	3.3	Stress history effects: overconsolidation	71
	3.4	Effect of drainage during shear	72
	3.5	Progressive failure	74
	3.6	Growth of slip surfaces: particle alignment	77
	3.7	Residual strength	81
	3.8	High sensitivity soils	82
	3.9	Effect of discontinuities on shear strength: soils	83
	3.10	Effect of discontinuities: rocks	84
	3.11	Other factors affecting shear strength	85
	3.12	Parameters used in stability analyses	86

CONTENTS

4	wiea	surement of snear strength	88
	4.1	Measurement of the peak strength of soils and rocks	88
	4.2	Laboratory strengths	89
	4.3	Field tests	93
	4.4	Measurement of residual strength	95
	4.5	Strategies for obtaining the residual strength	96
	4.6	Specimens with natural shear surfaces	96
	4.7	Laboratory-formed shear surfaces	98
	4.8	Experimental procedures for the ring shear test	99
	4.9	Selection of a strain rate	102
	4.10	Achieving adequate total deformation	103
	4.11	Effect of strain rate on residual strength	104
	4.12	Choice of testing method	106
	4.13	Discussion of the applicability of laboratory measured strengths	107
5	Prin	ciples of stability analysis	109
	5.1	Assessment of stability	109
	5.2	The f= o and conventional methods of analysis	110
	5.3	Bishop's method	115
	5.4	Application of computers	116
	5.5	Spencer's method	118
	5.6	Graphical wedge method	119
	5.7	Janbu's method	121
	5.8	Morgenstern and Price's procedure	123
	5.9	Maksumovic's method	129
	5.10	Sarma's method	131
	5.11	Miscellaneous other methods	134
	5.12	The infinite slope procedure	135
	5.13	Toppling modes of failure	137
	5.14	Mobilization of shear parameters	139
	5.15	Corrections for end effects and curved shear strength envelopes	140
6	Tech	niques used in stability analysis	142
	6.1	The search for the most critical slip surface	142
	6.2	Tension cracks	145
	6.3	Partly submerged slopes	147
	6.4	Back analysis and internal force distribution	149
	6.5	Seismic slope stability analyses	152
	6.6	Rates and magnitudes of slope movements	153
	6.7	Stability charts and their use in undrained analyses	158
	6.8	Stability charts: effect of porewater pressures	161
	6.9	Additional techniques for use with stability charts	172
	6.10	Computer program for slope stability calculations using Bishop's method	173
	6.11	Computer program using Janbu's method	179

1	α	AIT	NI	TC
		N	 1.0	1

ix

7	Wat	er pressures in slopes	185
	7.1	Introduction	185
	7.2	Steady seepage	186
	7.3	Boundary conditions	189
	7.4	The finite-element method in seepage	190
	7.5	Influence of variable permeability	193
	7.6	Undrained porewater pressures	194
	7.7	Changes in hydraulic boundary conditions	196
	7.8	Time-dependent seepage	197
	7.9	Rapid drawdown	201
	7.10	Systematic analysis of seepage conditions	203
	7.11	Field studies	204
	7.12	Representation of porewater-pressure information	205
	7.13	Pore water pressures for use in design	208
	7.14	Design charts for estimating r_a	210
	7.15	Case records of seepage in slopes	214
8	Rem	edial and corrective measures for slope stabilization	222
	8.1	Introduction	222
	8.2	Cut and fill solutions	223
	8.3	The neutral line theory	224
	8.4	Case records for the use of slope reprofiling	228
	8.5	Rock and soil anchors	234
	8.6	Additional factors in ground anchor design	236
	8.7	Case records of ground anchoring in soil slopes	240
	8.8	Drainage	243
	8.9	Shallow drains	243
	8.10		245
		Deep drains	251
	8.11	Trench drains	257
	8.12	Drains to eliminate undrained construction porewater pressures	258
	8.13 8.14	Drains in dams	258
		Retaining walls in slopes	0.7000
	8.15	Use of geogrids in embankments	264
	8.16	Temperature treatments and grouting for slope stabilization	266
	8.17 8.18	Choice of a stabilization method Rock slopes	268 270
	0.10	Rock stopes	270
9	Inves	stigation of landslides	272
	9.1	Land surface features: methods of mapping	272
	9.2		276
	9.3	Locating slip surfaces by surface measurement and inference	278
	9.4	Direct logging of faces and cores	282
	9.4	Compilation of the results of direct logging and boreholes	283
	9.6	Instrumentation	283
	2.0	Piezometers: types and response	20/

Piezometers: types and response

CONTENTS

	9.7	Historical research	291
	9.8	Premonitory signs of slope instability	292
	9.9	Landslide hazard and risk assessment	294
	9.10	Courses of action	295
10	Failu	res in earthworks: case histories	298
	10.1	Flow slides in tips and spoil heaps: The Aberfan tip failure of 1966	298
	10.2	Lessons from tip failures	302
	10.3	Construction period failures of large earthfills: Carsington Dam	304
	10.4	Construction period failures of large earthfills: Acu Dam	312
	10.5	Lessons to be learnt from construction period failures of large earthfills	313
	10.6	Construction failures in cut slopes with high brittleness: the Panama Canal	314
	10.7	Lessons to be learnt from construction failures in cut slopes with	
		high brittleness	317
	10.8	Small scale earthworks failures and the Selbome experiment	317
11	Failu	res in natural slopes: case histories	321
	11.1	Failure of a reservoir slope leading to overtopping: the Vaiont Dam	321
	11.2	Lessons to be learnt from Vaiont	326
	11.3	Construction problems in natural slopes: Sevenoaks road construction	327
	11.4	Lessons to be learnt from Sevenoaks	331
	11.5	Lower Greensand escarpment in south Kent	331
	11.6	Active coastal landslide complexes: Folkestone Warren, Kent	335
	11.7	Active coastal landslide complexes: Ventnor, Isle of Wight, and the Undercliff	342
	11.8	Mountain avalanches: Andean sturzstroms and landslide dams	349
	14.00	STORMAN AVAILABLES, AMOCAN STATISTICAL SAID LANGSING GAILS	
	ь.		
12	Desig	n recommendations for man-made slopes	353
	12.1	Embankment details	353
	12.2	Foundation treatments	354
	12.3	Cut slopes	354
	12.4	Control of water in water-retaining embankments	355
	12.5	Tips and spoil heaps	356
	12.6	Control of construction with instrumentation	357
	12.7	General considerations on the choice of factor of safety	358
	12.8	Choice of factors of safety for stabilizing existing landslides	360
	12.9	Choice of a factor of safety for earthworks	361
	12.10	Checking and validation, especially of computer analyses	362
	12.11	Complusion	267

A Equations in the Morgenstern and Price method B Derivation of force and moment equilibrium equations in Makrumovic's method C Displacement of a slide under a single acceleration pulse D Sama's non-vertical slice method E A note on r_u 369 378 382 384 E Samar's non-vertical slice method 387

CONTENTS

xi

D	Sama's non-vertical slice method	38-
Е	A note on r_u	38
Refere	nces	388
Subject index		399
Index to place names		400
Index of geological units and names		410