Numerical Methods in Rock Mechanics ### G. N. Pande Department of Civil Engineering University College Swansea UK #### G. Beer Division of Geomechanics Commonwealth Scientific and Industrial Research Organisation Australia ## J. R. Williams Department of Civil Engineering Massachusetts Institute of Technology USA # **Contents** | Acknowledgements Note | | | |-----------------------|--|----| | 1 | Introduction | 1 | | 1.1 | Introduction | 1 | | 1.2 | Rocks versus Soils | 2 | | 1.3 | Numerical Methods in Rock Engineering | 3 | | 2 | Elasto-Plasticity and Elasto-Viscoplasticity | 9 | | 2.1 | Introduction | 9 | | 2.2 | | 9 | | 2.3 | Theory of Elasto-Viscoplasticity | 22 | | 3 | Mechanical Properties of Intact Rocks and Rock | | | | Joints—Physical Behaviour and Numerical Modelling | 29 | | 3.1 | Introduction | 29 | | 3.2 | | 29 | | 3.3 | | 30 | | 3.5 | | 39 | | 3.6 | More Sophisticated Models | 48 | | 4 | Behaviour of Jointed Rock Masses | 50 | | 4.1 | Introduction | 50 | | 4.2 | The Rock Mass Factor | 50 | | 4.3 | Some Theoretical Models for the Prediction of j Values | 52 | | 4.4 | Elasticity Matrix of a Jointed Rock Mass | 57 | | 4.5 | Comments on Compliance Matrix of a Joint
Strength of Jointed Rock Masses | 61 | | 4.7 | Factors Influencing Strength of Rock Masses | 64 | | | Transaction of the Control Co | | | 5 | The Finite Element Method | 68 | | 5.1 | Introduction | 68 | | 5.2 | Two-dimensional Analysis | 69 | | 5.3
5.4 | Three-dimensional Analysis
Quasi-three-dimensional Analysis | 85
94 | |---|--|---| | 6.1
6.2
6.3
6.4 | Joint Elements and Infinite Elements Introduction Joint Elements Infinite Elements Some Comments | 97
97
97
107
114 | | | Constitutive Models of the Behaviour of Jointed Rock
Masses | 116 | | 7.1
7.2
7.3
7.4
7.5
7.6
7.7
7.8
7.9
7.10
7.11 | Introduction Jointed Rock Mass as a Linear Elastic Anisotropic Material Rock Mass as a 'No Tension' Material Multilaminate Framework of Models of Jointed Rock Masses Improved Models of Behaviour of Jointed Rock Masses Joint Opening/Closing Monitor More Sophisticated Models Time Dependence in the Behaviour of Jointed Rock Masses Plasticity Formulation of Multilaminate Framework Reinforcements in Jointed Rock Masses Strength of Reinforced Jointed Rock Mass under Simple Loading Conditions | 116
116
119
122
126
129
131
131
132
133
139 | | 8 | Applications of the Finite Element Method Introduction | 147 | | 8.2
8.3
8.4 | A Jointed Rock Slope Analysis of Powerhouse Caverns Analysis of Reinforced Jointed Rock Masses and Design of Passive Fully Grouted Rock Bolts | 147
153
162 | | 9 | Boundary Element Methods | 175 | | 9.1
9.2
9.3
9.4
9.5 | Introduction Modified Trefftz Methods Indirect Boundary Element Methods Direct Boundary Element Method Advanced Boundary Element Method | 175
176
184
190
194 | | | | | | 10.1
10.2
10.3
10.4 | Applications of the Boundary Element Method Introduction Modelling of Joints Modelling of Elasto-Plastic Behaviour Conclusions and Future Outlook | 206
206
208
217
226 | | | | | vii | |--------------------------------------|--|--|---| | 11.1
11.2
11.3
11.4
11.5 | Introduction
The Discrete
Rigid Body
Contact De
Contact an | e Element Concept | 229
229
232
263
239
252
259 | | 12 | The Disci | rete Element Method—Deformable Bodies | 263 | | 12.1
12.2
12.3
12.4 | Modal Dec
Modal Dec | of Deformable Bodies
composition
composition in Finite Elements
ne-dimensional Formulation | 263
271
275
276 | | 12.5 | Generalize
Constitutive | d Modal Methods for the Analysis of Discrete Systems
Relationships
of Deformable Body Analysis | 283
291
295 | | App | oendix I | Invariants of Stress and Strain | 313 | | App | oendix II | Transformation of Stresses, Strains and Compliances | 317 | | App | oendix III | | 320 | | App | endix IV | Choosing Eigenmodes of a Rectangular
Element | 323 | | Ind | ∍x | | 326 | | | | | |