Contents

Preface vii
Notation ix
Introduction 1

1 Background to modern tunnelling 8
 1.1 Introduction 8
 1.2 Tunnelling in antiquity 9
 1.3 Development of rationale 12
 1.4 New methods, tools and techniques 14
 1.5 Towards the present day 19
 1.6 The developing problems of management 34

2 Design: the ubiquitous element 37
 2.1 The nature of design and its application to tunnelling 37
 2.1.1 Characteristics of design 38
 2.1.2 The parties to the design process 39
 2.1.3 Uncertainty and risk 40
 2.1.4 Qualifications for the design team 47
 2.2 Steps in the design process 48
 2.3 Examples of application of the principles 54
 2.4 Construction (Design and Management) Regulations 55
 2.5 Pitfalls in the design process 56
 2.6 The observational approach 60
 2.7 The Observational Method and Observational Design 63
3 Planning

3.1 Introduction to planning 70
 3.1.1 Assessment between options 72
 3.1.2 In the beginning 74
 3.1.3 Planning unfolds 77
3.2 Financial planning 81
3.3 The law: facilitator or tripwire? 82
3.4 Competence in planning 85
3.5 Coordinated planning of projects 87
 3.5.1 Multiple-purpose projects 87
 3.5.2 Serial planning of projects 87
3.6 Issues of procurement of concern to planning 89
3.7 Reliability of forecasting 90
 3.7.1 Political influence 90
 3.7.2 Authorship of estimates 91
 3.7.3 Economic and political factors 92
 3.7.4 Timing of completion 92
 3.7.5 Development of competitors 92
 3.7.6 Ranges and qualifications 92
 3.7.7 Attention to 'climate of risk' 92
 3.7.8 Changes in requirements, including uncertainty and vacillations 93
 3.7.9 Contractual relationships 93
 3.7.10 Tendering processes 94
 3.7.11 Inflexible programming 94
3.8 Practical examples of success and failure in planning 95

4 Studies and investigations

4.1 The methodical acquisition of data 97
 4.1.1 Studies relating to operation 97
 4.1.2 Studies relating to the execution of the project 99
 4.1.3 Instrumentation and its interpretation 106
4.2 How not to manage the site investigation 108
4.3 How much site investigation? 111
4.4 Reporting on site investigation 114
4.5 Identification of patterns in the ground 119
4.6 Specific features of site investigation 121
5 Design of the tunnel project

5.1 Options in tunnel design 131
 5.1.1 The nature of the ground 131
 5.1.2 Drill-and-blast 146
 5.1.3 Tunnels with Informal Support 146
 5.1.4 Squeezing ground 149
 5.1.5 Tunnels driven by TBM or Shield 149

5.2 Design of the support system 151
 5.2.1 Steel arches 151
 5.2.2 Informal Support for tunnels in weak and squeezing ground 152
 5.2.3 Segmental linings 154
 5.2.4 Tunnel junctions and enlargements 160

5.3 Ground movements and surface settlement 162

5.4 Pressure tunnels 166

5.5 Aids to design calculation 167
 Appendix 5A The circular tunnel in elastic ground 167
 Appendix 5B Cylindrical cavity with internal support 170
 Appendix 5C Spherical cavity with internal support 175
 Appendix 5D The reinforced rock arch 177
 Appendix 5E The brickwork or masonry tunnel 177
 Appendix 5F The ground model 180
 Appendix 5G Ground-water flow into a tunnel 182

6 Design of construction 186

6.1 The construction process 186
 6.1.1 Prediction 188
 6.1.2 Execution 189
 6.1.3 Observation 193

6.2 The initial phases 198
 6.2.1 Bidding strategy 198
 6.2.2 The early phase of construction 201

6.3 Choice of method 203

6.4 Special expedients 210
Contents

7 Management

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.1 Introduction</td>
<td>215</td>
</tr>
<tr>
<td>7.2 Project procurement</td>
<td>217</td>
</tr>
<tr>
<td>7.3 The ‘zero-sum’ fallacy</td>
<td>219</td>
</tr>
<tr>
<td>7.4 The functions of project management</td>
<td>222</td>
</tr>
<tr>
<td>7.5 Principles of project management</td>
<td>226</td>
</tr>
<tr>
<td>7.6 Project management in practice</td>
<td>227</td>
</tr>
<tr>
<td>7.7 The team and the contract</td>
<td>230</td>
</tr>
</tbody>
</table>

8 Hazards, disputes and their resolution

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.1 Introduction</td>
<td>243</td>
</tr>
<tr>
<td>8.2 Hazards in construction</td>
<td>245</td>
</tr>
<tr>
<td>8.3 Methane</td>
<td>252</td>
</tr>
<tr>
<td>8.4 Defects during operation</td>
<td>257</td>
</tr>
<tr>
<td>8.5 Disputes</td>
<td>260</td>
</tr>
<tr>
<td>8.5.1 Causes of disputes</td>
<td>260</td>
</tr>
<tr>
<td>8.5.2 Resolution of disputes</td>
<td>263</td>
</tr>
</tbody>
</table>

9 Coda: the Heathrow Tunnel collapse

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1 The context of the project</td>
<td>271</td>
</tr>
<tr>
<td>9.2 The project unfolds</td>
<td>275</td>
</tr>
<tr>
<td>9.3 Technical explanations of the collapse</td>
<td>280</td>
</tr>
<tr>
<td>9.4 Failures of management</td>
<td>280</td>
</tr>
<tr>
<td>9.5 Summary of factors contributing to failure</td>
<td>285</td>
</tr>
<tr>
<td>9.5.1 The project management</td>
<td>285</td>
</tr>
<tr>
<td>9.5.2 Relationships between design and construction</td>
<td>286</td>
</tr>
<tr>
<td>9.5.3 Acceptance standards for construction</td>
<td>286</td>
</tr>
<tr>
<td>9.5.4 Compensation grouting</td>
<td>287</td>
</tr>
<tr>
<td>9.5.5 Monitoring</td>
<td>287</td>
</tr>
<tr>
<td>9.5.6 Failure to investigate</td>
<td>288</td>
</tr>
<tr>
<td>9.6 Events post collapse</td>
<td>288</td>
</tr>
</tbody>
</table>

References

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>289</td>
</tr>
</tbody>
</table>

Author Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>300</td>
</tr>
</tbody>
</table>

Subject Index

<table>
<thead>
<tr>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>303</td>
</tr>
</tbody>
</table>