Contents

Preface v

SESSION 15 Fold Morphology 309
 Introduction 309
 Definitions: a single folded surface 309
 Fold dimensions 311
 Fold shape 313
 Fourier analysis of fold form 314
 Questions 317
 Starred (**) questions 322
 Answers and comments 322
 Wavelength—amplitude analysis 322
 Visual harmonic analysis 326
 Calculation of Fourier coefficients 327
 Axial trace construction 327
 Symmetry of small scale folds 329
 Keywords and definitions 329
 Key references 332

SESSION 16 Fold Orientations: Projection Techniques 333
 Introduction 333
 Fold axis 334
 π-diagrams 334
 β-diagrams 335
 Axial surface 336
 Axial trace 336
 Crest plane trace 336
 Questions 336
 Starred (**) question 339
 Answers and comments 339
 Concluding remarks 344
 Keywords 344
 Key references 344

SESSION 17 Fold Classification 347
 Introduction 347
 Fold classification using layer thickness variations (Ramsay, 1967) 348
 Questions 349
 Starred (**) questions 351
 Answers and comments 354
 Layer thickness variations 354
 Dip isogons 356
 t' equations describing fold shape 357
 Flattened folds 358
 Fold shape in flattened parallel folds 359
SESSION 18 Fold Sections and Profiles

Introduction

Cross section and profile construction

Questions

Effects of topographic variation on profile construction methods

The Busk Construction

Fold reconstruction using isogons

Starred (*) questions

Answers and comments

Concluding comments

Keywords and definitions

Key references

SESSION 19 Fold Mechanisms: 1. Single Layers

Introduction

Questions

Starred (*) question

Answers and comments

Wavelength—thickness relationships: theory

Wavelength—thickness relationships: measurement

Dependence of fold shape on viscosity contrast in single layer buckles

High competence contrasts

Low competence contrast

Cuspate-lobate folds

Assessing competence contrasts

Progressive shape changes during folding

Keywords and definitions

Key references

SESSION 20 Fold Mechanisms: 2. Multilayers

Introduction

Questions

Starred (*) question

Answers and comments

Properties of folds in multilayers deduced from the theory of single layer buckling

Change of fold shape with packing distance of competent layers

Fold styles in multilayers

Folds developed independently of gravitational force

Folds developed under the influence of gravitational force

Anisotropy

Geometric development of chevron folds from conjugate kinks

Synchronous development of two kink bands

Mechanisms of nucleation and propagation of conjugate kink folds

Kink band geometry and stress axes

Crenulation cleavage

Keywords and definitions

Key references

SESSION 21 Strain and Small Scale Structures in Folds

Introduction

Questions

Starred (*) questions

CONTENTS

Fold shape in flattened Class 3 folds

Laboratory formed folds

Sorby's "fish-hook" folds

Keywords and definitions

Key references

SESSION 22 Superposed Folding

Introduction

Questions and starred (*) questions

Answers and comments

The folding of non-parallel surfaces

Superposed shear folds

Fold interference patterns

General discussion of interference patterns

Geometric analysis of superposed folds using projection techniques

Keywords and definitions

Key references

SESSION 23 Fault Geometry and Morphology

Introduction

Nomenclature of faults

Questions

Starred (*) question

Answers and comments

Determination of the movement direction on a fault surface

Calculation of the movement vector on a fault surface

Internal geometry of ramp-flat thrust sheets

Keywords and definitions

Key references

SESSION 24 Faults and the Construction of Balanced Cross Sections

Introduction

Questions and starred (*) questions

Answers and comments

Construction of an undeformed template

Line length balancing: Example 1

Line length balancing: Example 2

Calculation of the depth to detachment

Line length balancing in strained rocks

Correction of layer thickness in strained rocks

Concluding comments

Keywords and definitions

Key references

SESSION 25 Mechanical Analysis of Fractures

Introduction

Force and stress

Stress—strain relationships in a homogeneous, isotropic, elastic body

Questions

Laboratory tests for rock failure

P-wave first motion analysis

Shatter cone geometry

Keywords and definitions

Key references