Table of contents

Preface ix
About the Editors xi
Contributors xiii
Acknowledgement xvii

1 Reliability as a basis for geotechnical design
Kok-Kwang Phoon

1.1 Introduction
1.2 Evolution of structural and geotechnical design
1.3 Role of engineering judgment
1.4 Reliability versus geotechnical requirements of a safety format
1.5 Some reliability applications
 1.5.1 Multivariate soil databases
 1.5.2 Geotechnical information: Is it an “investment” or a “cost”?
 1.5.3 Model uncertainties
 1.5.4 Scarcity of geotechnical data
 1.5.5 Probability distributions that accommodate a “worst credible” value at a prescribed quantile
 1.5.6 Spatial variability
 1.5.7 Design point from the first-order reliability method (FORM) and partial factors
 1.5.8 System reliability
1.6 Concluding thoughts

2 General principles on reliability according to ISO2394
Johan V. Retief, Mahongo Dithinde, and Kok-Kwang Phoon

2.1 Introduction: Background to the development of ISO2394:2015
 2.1.1 Stages of development of ISO2394
 2.1.2 Status and use of ISO2394
 2.1.3 Objectives and fundamental principles
2.2 Overview of the standard ISO2394:2015
2.3 Conceptual basis and fundamental requirements
2.4 Key reliability concepts
2.5 Concluding summary of ISO2394:2015

3 Uncertainty representation of geotechnical design parameters
Kok-Kwang Phoon, Widjojo A. Prakoso, Yu Wang, and Jianye Ching

3.1 Introduction 49
3.2 Sources of uncertainties 51
3.3 Natural variability 52
3.4 Measurement error 54
3.5 Transformation uncertainty 55
3.6 Scale of fluctuation 60
3.7 Intact rock and rock mass 63
 3.7.1 Natural variability of intact rock 63
 3.7.2 Intact rock measurement error 67
 3.7.3 Intact rock scale of fluctuation 69
 3.7.4 Rock mass natural variability 69
 3.7.5 Rock mass transformation uncertainty 71
3.8 Statistical uncertainty for site-specific natural variability 71
 3.8.1 Statistical uncertainty in site-specific trend 71
 3.8.2 Statistical uncertainty of site-specific COV and SOF 72
3.9 Bayesian quantification of site-specific natural variability 77
3.10 Selection of site-specific transformation model 80
3.11 Conclusions and future work 82

4 Statistical characterization of multivariate geotechnical data
Jianye Ching, Dian-Qing Li, and Kok-Kwang Phoon

4.1 Introduction 89
4.2 Correlation 92
4.3 Multivariate normal probability distribution function 96
4.4 Multivariate normal distributions constructed with genuine multivariate data 98
 4.4.1 CLAY/5/345 98
 4.4.2 CLAY/6/353 102
4.5 Multivariate normal distributions constructed with *bivariate* data 105
 4.5.1 CLAY/7/6310 105
 4.5.2 CLAY/10/7490 108
4.6 Multivariate normal distributions constructed with *incomplete* bivariate data 114
 4.6.1 CLAY/4/BN 114
 4.6.2 SAND/4/BN 115
4.7 Multivariate distributions constructed with the copula theory 116
 4.7.1 Copula theory 116
 4.7.2 Elliptical copulas (Gaussian and t copulas) 117
 4.7.3 Kendall rank correlation 118
 4.7.4 Estimating C using Pearson and Kendall correlations 119
 4.7.5 Comparison between the Gaussian and t copulas 122
4.8 Conclusions 123

5 Statistical characterization of model uncertainty
Mahongo Dithinde, Kok-Kwang Phoon, Jianye Ching, Limin Zhang, and Johan V. Retief

5.1 Introduction 127
5.2 Exploratory data analysis 129
5.3 Detection of data outliers 131
 5.3.1 Sample z-score method 131
 5.3.2 Box plot method 132
 5.3.3 Scatter plot method 133
5.4 Probabilistic model for M 134
5.5 Verification of randomness of the model factor 136
 5.5.1 Removal of statistical dependencies 136
 5.5.1.1 Generalised model factor approach 137
 5.5.1.2 Verification of removal of systematic dependency 139
 5.5.2 Model factor as a function of input parameters 140
5.6 Available model factor statistics 142
 5.6.1 Laterally loaded rigid bored piles (ultimate limit state) 142
 5.6.2 Axially loaded piles (ultimate limit state) 142
 5.6.3 Shallow foundations (ultimate limit state) 142
 5.6.4 Axially loaded pile foundations (serviceability limit state) 144
 5.6.5 Limiting tolerable displacement (serviceability limit state) 151
 5.6.6 Factor of safety of a slope calculated by limit equilibrium method 152
 5.6.7 Base heave for excavation in clays 155
5.7 Conclusions 155

6 Semi-probabilistic reliability-based design
Kok-Kwang Phoon and Jianye Ching

6.1 Introduction 159
6.2 Survey of calibration methods 163
 6.2.1 Basic Load Resistance Factor Design (LRFD) 163
 6.2.2 Extended LRFD and Multiple Resistance and Load Factor Design (MRFD) 165
 6.2.3 Robust LRFD (R-LRFD) 167
 6.2.4 LRFD for total settlement 169
 6.2.5 LRFD for differential settlement 171
 6.2.6 First-order Reliability Method (FORM) 171
 6.2.7 Baseline technique 172
 6.2.8 Degree of understanding 173
6.3 Issue of variable coefficient of variation 175
 6.3.1 Partial factors for the calibration case 177
 6.3.2 Actual reliability index for the validation case 177
6.4 Issue of variable soil profiles 178
Table of contents

6.5 Quantile Value Method (QVM) 180
 6.5.1 Robustness of QVM against variable COV 180
 6.5.2 Pad foundation supported on boulder clay 181
6.6 Effective random dimension 185
 6.6.1 Gravity retaining wall 187
6.7 Conclusions 189

7 Direct probability-based design methods 193
 Yu Wang, Timo Schweckendiek, Wenping Gong, Tengyuan Zhao, and Kok-Kuang Phoon
 7.1 Introduction 193
 7.2 Situations of direct probability-based design methods being necessary 195
 7.3 Expanded reliability-based design (expanded RBD) method 200
 7.4 Reliability-based robust geotechnical design (RGD) 204
 7.5 The new safety standards for flood defenses in the Netherlands 206
 7.6 System reliability 208
 7.7 Reliability target 210
 7.8 Gravity retaining wall design example 211
 7.9 Concluding remarks and future work 223

Index 227