Concrete Face Rockfill Dams

Paulo T. Cruz
Dam Consulting Engineer, São Paulo, Brazil

Bayardo Materón
Bayardo Materón & Associates, São Paulo, Brazil

Manoel Freitas
Hydrogeo Engharia S/C Ltda, São Paulo, Brazil
Contents

List of figures xiii
List of tables xxiv
Foreword xxvii
Acknowledgments xxxi
About the authors xxxvi
Introduction xxxv

1 An overall introduction to concrete face rockfill dams 1
1.1 A panorama of CFRDs in the world 1
1.2 Important events related to CFRD 5
1.3 CFRD in seismic areas—a historical event 6
1.4 High dams in the near future 10
1.5 Thoughts on very high CFRDs 10

2 Design criteria for CFRDs 11
2.1 Introduction 11
2.2 Rockfill embankment 12
 2.2.1 Foundation excavation and treatment criteria 12
 2.2.2 Zoning designations 15
 2.2.3 Rockfill grading and quality 18
 2.2.4 Adding water to rockfill 20
 2.2.5 Downstream rockfill embankment face 20
 2.2.6 Temporary construction slopes and ramps 21
 2.2.7 Compaction control tests 22
2.3 Water flow through rockfill and leakage 23
2.4 Stability 24
 2.4.1 Static stability of the rockfill embankment 24
 2.4.2 Earthquake considerations 24
2.5 Toe slab or the plinth 26
 2.5.1 Treatment of the plinth foundation 26
6.3.4 The effects of anisotropy 173
6.3.5 Discharge 175
6.4 Some historical precedents 176
6.5 Leakage measured in CFRDs 178
 6.5.1 Foundation flows 179
 6.5.2 Finite element analysis 181
 6.5.3 Anisotropic effects on CFRDs 182
 6.5.4 Flow-related conclusions 183
6.6 Design of CFRDs for throughput control 184
 6.6.1 Zoning 184
 6.6.2 The ideal rockfill 184
 6.6.3 Deviations from the "ideal rockfill" 185
 6.6.4 Practical recommendations 186
6.7 Reinforced rockfill 186

7 Foundation treatment 191
 7.1 Plinth foundation 191
 7.2 Plinth stability 195
 7.3 Foundation transitions 197
 7.4 Rockfill foundation 198
 7.4.1 River bed 198
 7.4.2 On the abutments 198
 7.5 Grouting 199

8 Plinth, slab and joints 201
 8.1 Plinth 201
 8.1.1 Design concept 201
 8.1.2 Width 201
 8.1.3 Thickness 203
 8.1.4 Plinth-slab connection 203
 8.1.5 Features and practices 204
 8.1.6 Foundation on deformable structure – Hengshan case 204
 8.1.7 Transversal joints 205
 8.1.8 Foundation treatment and regularization 206
 8.2 Slab 206
 8.2.1 Slab design concept 206
 8.2.2 New impermeability concepts 207
 8.2.3 Slab thickness 209
 8.2.4 Joint sealing 211
 8.3 Reinforcement design 219
 8.4 Crest parapet wall and freeboard 219

9 Instrumentation 225
 9.1 Introduction 225
 9.2 Monitoring parameters 226
 9.2.1 Dam movements 226
 9.2.2 Monitoring rockfill displacements 227
 9.2.3 Surface movements 230
 9.2.4 Pore pressure 230
 9.2.5 Leakage control 231
 9.2.6 Slab deflections and strain X stress control 232
 9.2.7 Permanent instrumentation houses 236
 9.3 Monitoring and maintenance care 236
 9.4 Final considerations 238

10 CFRD performance 245
 10.1 Introduction 245
 10.2 Settlement 247
 10.3 Correlations between settlement, dam height and valley shape 250
 10.4 Horizontal displacements 252
 10.5 Combined movements 256
 10.6 Face deflection 257
 10.7 Vertical compressibility modulus (E_v) and transversal modulus (E_t) 260
 10.8 Tri-dimensional displacements 262
 10.9 Conclusions 264

11 Numerical analysis and its applications 267
 11.1 Introduction 267
 11.2 Engineering properties of rockfill material 268
 11.3 Rockfill material constitutive models 269
 11.3.1 Non-linear elastic model 270
 11.3.2 Duncan-Chang's hyperbola model 271
 11.3.3 Modified Naylor's K-G model 272
 11.3.4 Elasto-plastic model 272
 11.4 CFRD numerical analyses methods 274
 11.4.1 Simulation of surface contact and joints 274
 11.4.2 Simulation of construction steps and reservoir impounding sequence 276

8.5 Fissures, cracks, and failures – treatments 221
8.6 Drainage near the plinth 224
11.5 Application of numerical analyses on CFRDs
 11.5.1 The contribution of the numerical analyses for improving CFRDs designs
 11.5.2 Understanding the stress-strain status of the dam
 11.5.3 Understanding the stress status of face slab
 11.5.4 Predicting the displacement of joints
 11.5.5 Case studies

11.6 Closing remarks
11.7 Numerical analyses applied to Brazilian CFRDs

12 Construction features

12.1 Introduction
12.2 General aspects
12.3 Plinth construction
12.4 Excavation
 12.4.1 Excavation on sound rock
 12.4.2 Excavation in weathered rock
 12.4.3 Excavation in saprolite
 12.4.4 On alluvium
12.5 Concrete construction
 12.5.1 Concrete type
 12.5.2 Forms type
 12.5.3 Articulated plinth
 12.5.4 Diaphragm wall
 12.5.5 Grouting
12.6 River diversion
 12.6.1 Diversion strategy
 12.6.2 Priority sections
 12.6.3 Stages
 12.6.4 Scheduling
12.7 Embankment construction
 12.7.1 Types of fill
 12.7.2 Embankment zoning
12.8 Fill construction
 12.8.1 Placing layers
 12.8.2 Compaction
 12.8.3 Ramping
 12.8.4 Dumping under water
 12.8.5 Stage construction
12.9 Slab construction
 12.9.1 Surface preparation
 12.9.2 Conventional slope protection
12.10 Outputs

References
Colour plates