A Guide to Field Instrumentation in Geotechnics

Principles, installation and reading

Richard Bassett
Contents

List of figures and tables ix
Foreword xvii
Acknowledgements xviii

Introduction 1

1 The general philosophy of geotechnical instrumentation 2

- Philosophy 2
- Levels of instrumentation 3
- Rates of change 3
- Types of monitoring 3

2 Basic soil mechanics and pore pressures 6

- Soils as a simplified model 6
- Pore pressure measuring instruments 14
- Types of piezometer 14
- Removable piezometers 20
- Using the simplified model to interpret pore water pressure responses 20
- Cuttings 26
- Embankments 28
- Tunnels 30

3 Displacements and global deformations 37

- General 37
- Strains and deformations 38
- Vertical displacements within structures and soils 38
- Hydraulics 39
- Piezometer settlement cells 40
Displacement of structures 43
Incorrect use of electrolevel beam systems 46
Horizontal displacements in structures 51
Vertical displacements in soils by mechanical means 51
Micrometer settlement measurements (the rod extensometer) 53
Magnetic plates and reed switch sensors (the magnetic extensometer) 55
Deformations in soils using inclinometers and hydrostatic profile gauges 57
Inclinometers: the technician 60
Inclination and the reading unit 61
The inclinometer body 62
Minimising instrument zero and small casing errors 66
Fundamentals of inclinometer installation 68
The reference casing 69
The borehole 71
The installation 73
Installation procedure 74
Theoretical concepts behind borehole grouting 74
Subsequent soil displacement 76
In-place inclinometers 78
Horizontal profile gauges using an inclinometer probe or IPI units 80
Interpretation 80
Data reduction 82
Advanced uses of combined horizontal and vertical displacements 88
The Mohr circle of strain 89

4 Vibrating wire instruments and localised measurement of strains 100

Basic mechanics of vibrating wire instruments and linear strain measurement 100
Real design considerations 101
Load cells and embedded strain gauges using the reaction beam as the strain control 106
Load and stresses 109
Analysis of stresses to provide full stress analysis 109
The interpretation of vibrating wire instruments 110
Assessment and interpretation of vibrating wire data 110
Strains 111
Data interpretation 113
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pore pressure change</td>
<td>116</td>
</tr>
<tr>
<td>Interpreting other vibrating wire instruments, load cells</td>
<td>117</td>
</tr>
<tr>
<td>and crackmeters</td>
<td></td>
</tr>
<tr>
<td>Cracks and damage measurement</td>
<td>117</td>
</tr>
<tr>
<td>Crack monitoring instruments</td>
<td>121</td>
</tr>
<tr>
<td>5 Survey techniques</td>
<td></td>
</tr>
<tr>
<td>Total station monitoring</td>
<td>126</td>
</tr>
<tr>
<td>Use of automatic total stations</td>
<td>126</td>
</tr>
<tr>
<td>Prisms</td>
<td>133</td>
</tr>
<tr>
<td>Mounting systems</td>
<td>137</td>
</tr>
<tr>
<td>Limitations in tunnels</td>
<td>137</td>
</tr>
<tr>
<td>Advanced optical systems</td>
<td>140</td>
</tr>
<tr>
<td>6 Specialist instruments</td>
<td></td>
</tr>
<tr>
<td>The Bassett convergence system</td>
<td>144</td>
</tr>
<tr>
<td>The geometric principles of a bar/cam unit</td>
<td>144</td>
</tr>
<tr>
<td>Geometry of the beam/cam system</td>
<td>147</td>
</tr>
<tr>
<td>The BCS field trial, system configuration</td>
<td>152</td>
</tr>
<tr>
<td>Data capture and processing</td>
<td>154</td>
</tr>
<tr>
<td>Measurements</td>
<td>154</td>
</tr>
<tr>
<td>Temperature changes</td>
<td>157</td>
</tr>
<tr>
<td>Train transit effects</td>
<td>157</td>
</tr>
<tr>
<td>The influence of the excavation of a new adjacent tunnel</td>
<td>158</td>
</tr>
<tr>
<td>Conclusions</td>
<td>159</td>
</tr>
<tr>
<td>Fibre-optic systems</td>
<td>160</td>
</tr>
<tr>
<td>7 Instrument systems for tunnelling projects</td>
<td></td>
</tr>
<tr>
<td>Initial assessment (experience)</td>
<td>167</td>
</tr>
<tr>
<td>Tunnelling and instrumentation</td>
<td>168</td>
</tr>
<tr>
<td>Preliminary predictions</td>
<td>168</td>
</tr>
<tr>
<td>Numerical assessment</td>
<td>177</td>
</tr>
<tr>
<td>Instrumentation</td>
<td>183</td>
</tr>
<tr>
<td>Field instrumentation layouts (ideal)</td>
<td>185</td>
</tr>
<tr>
<td>Convergence</td>
<td>185</td>
</tr>
<tr>
<td>Structures and deformations</td>
<td>187</td>
</tr>
<tr>
<td>Global settlement at ground level</td>
<td>187</td>
</tr>
<tr>
<td>Data presentation</td>
<td>194</td>
</tr>
</tbody>
</table>
Contents

8 Data logging, recovery and presentation 201

- **Basics** 201
- **Radio connection** 203
- **Mesh networks** 205
- **WiFi and IP address sensors** 205
- **Internet-based data presentation and underground construction information management systems (UCIMS)** 206

9 Conclusions 209

- **Notes** 211
- **References** 212
- **Index** 213
Figures and tables

2.1 Diagram of the concept of void ratio 7
2.2 Idealised column of soil experiencing one-dimensional consolidation 7
2.3 Normal consolidation for a clay soil on a $1 + e/\text{normal stress}$ plot 8
2.4 Normal consolidation for a clay soil on a $1 + e/\log_{10}$ normal stress plot 8
2.5 Unloading (swelling) curves on a $1 + e/\text{normal stress}$ plot 9
2.6 Equilibrium stresses on a rectangular element 10
2.7 ‘Mohr circle of stress’ at failure 10
2.8 ‘Mohr circle of stress’ for a drained material with cementing or cohesion 11
2.9 Deformation in the principal stress directions 11
2.10 Idealised grain contact 13
2.11 State boundary relationships for a clay on an elastic unloading line 13
2.12 The simplified ellipse form assumed in the Roscoe–Burland version in the CRISP program 15
2.13 Set of state boundary surfaces 15
2.14 Isometric view of the state boundary surface on $s', t, 1 + e$ axes 15
2.15 Simplified pore pressure measuring unit 16
2.16 Flushable modification to a piezometer 16
2.17 Schematic diagram of a pneumatic piezometer 17
2.18 Deformation of a diaphragm 17
2.19 Arrangement of a diaphragm 18
2.20 Simplified full Wheatstone bridge circuit 18
2.21 Suction gauge (after Imperial College, London) 19
2.22 The BAT piezometer system (courtesy Profound BV) 19
2.23 Undrained surface ($1 + e = \text{constant}$) 21
2.24 Detailed wall section 22
2.25 Locations of initial total stress for A to E 22
2.26 Magnified rotation of the wall due to excavation 23
2.27 Total stress paths A to E 23
2.28 Stress paths for element A 23
2.29 Stress paths for elements B and C 24
2.30 Changes in pore water pressure (pwp)/depth of excavation 25
2.31 Stress paths for elements D and E
2.32 Location of pore pressure measurement units in a cutting excavation
2.33 Total stress paths for typical piezometer locations
2.34 Decay of pore suction with swelling of the clay and fall of the critical-state strength
2.35 Locations of pore pressure measuring units for an embankment construction
2.36 Total effective stress paths for the D_1, D_5, and D_9 units
2.37 Typical piezometer layout around a trial tunnel (4 m to 10 m diameter) in over-consolidated clay
2.38 Initial stress conditions prior to tunnel construction in an over-consolidated clay
2.39 Total stress conditions after tunnelling
2.40 The development of over-consolidated stresses in geological time to give the stress conditions at points (C' and C) and (D' and D) in the original ground
2.41 Stress path for a crown element
2.42 Stress path for side element on the horizontal centre line
2.43 Pore pressure suction distribution round a tunnel construction
2.44 Contours of pore water pressure changes when Δt exceeds yield and rupture mechanisms begin to develop
2.45 Changes in pore water pressure with time assuming rapid continuous tunnelling
3.1 Hydraulic settlement unit
3.2 Comprehensive automatic hydraulic settlement system used inside structures (also known as a 'water level' system)
3.3 Piezometric settlement system
3.4 Pipework losses due to air bubbles
3.5 Line of electrolevel beams
3.6 Principle of resistance changes in an electrolevel
3.7 Wheatstone bridge for electrolevels
3.8 Fredericks Company 0711 series (five samples) electrolevel typical output
3.9 Tunnel section: non-alignment beam system
3.10 Limitation, unmeasured vertical displacement measurement on a vertical bar unit
3.11 Limitation, unmeasured axial displacement measurement in an angled bar unit
3.12 The influence of unknown displacements on the real position of pin C
3.13 Measured displacement vectors
3.14 Best-fit estimate of in-line length changes to match surveyed displacements of F
3.15 Location of reference pins and beams 1 to 16
3.16 Full settlement data for a continuous chain
3.17 Estimated settlements based on alternative tilt meter layouts
<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.18</td>
<td>Schematic diagram of an inverted pendulum system</td>
<td>52</td>
</tr>
<tr>
<td>3.19</td>
<td>Principle of the optical pendulum reader system</td>
<td>52</td>
</tr>
<tr>
<td>3.20</td>
<td>Use of plate settlement units in an embankment construction</td>
<td>53</td>
</tr>
<tr>
<td>3.21</td>
<td>Rod extensometer settlement measurement</td>
<td>54</td>
</tr>
<tr>
<td>3.22</td>
<td>Rod extensometer systems showing fixities and manual versus electrical measurement</td>
<td>55</td>
</tr>
<tr>
<td>3.23</td>
<td>Reed switch unit</td>
<td>56</td>
</tr>
<tr>
<td>3.24</td>
<td>Magnetic field inside an inclinometer casing</td>
<td>57</td>
</tr>
<tr>
<td>3.25</td>
<td>Installation of a spider magnet system outside the inclinometer casing</td>
<td>58</td>
</tr>
<tr>
<td>3.26</td>
<td>Spider magnet and probe</td>
<td>59</td>
</tr>
<tr>
<td>3.27</td>
<td>Plate magnet</td>
<td>59</td>
</tr>
<tr>
<td>3.28</td>
<td>Physical layout of one inclinometer and an included settlement system (spider magnets)</td>
<td>60</td>
</tr>
<tr>
<td>3.29</td>
<td>Data available from a single inclinometer and settlement system</td>
<td>61</td>
</tr>
<tr>
<td>3.30</td>
<td>MEMS accelerometer (diagrammatic)</td>
<td>63</td>
</tr>
<tr>
<td>3.31</td>
<td>Complete inclinometer probe</td>
<td>63</td>
</tr>
<tr>
<td>3.32</td>
<td>Inclinometer casing/wheel alignment</td>
<td>63</td>
</tr>
<tr>
<td>3.33</td>
<td>Sprung wheel action</td>
<td>64</td>
</tr>
<tr>
<td>3.34</td>
<td>Forces on the sprung wheel pair</td>
<td>64</td>
</tr>
<tr>
<td>3.35</td>
<td>Sprung wheel action in distorted casing (diagrammatic)</td>
<td>64</td>
</tr>
<tr>
<td>3.36</td>
<td>Dimensions of a typical inclinometer probe</td>
<td>65</td>
</tr>
<tr>
<td>3.37</td>
<td>Inclinometer probe limitations within 70 mm outer diameter (OD) curved casing</td>
<td>65</td>
</tr>
<tr>
<td>3.38</td>
<td>Exaggerated diagram of curvature limits</td>
<td>65</td>
</tr>
<tr>
<td>3.39</td>
<td>Excessive deformation of casing preventing use of a standard inclinometer</td>
<td>66</td>
</tr>
<tr>
<td>3.40</td>
<td>Inclinometer casing groove nomenclature</td>
<td>67</td>
</tr>
<tr>
<td>3.41</td>
<td>Elimination of sensor/body errors using a double traverse</td>
<td>67</td>
</tr>
<tr>
<td>3.42</td>
<td>Typical inclinometer casing installation</td>
<td>70</td>
</tr>
<tr>
<td>3.43</td>
<td>Causes of changes in casing length (exaggerated)</td>
<td>71</td>
</tr>
<tr>
<td>3.44</td>
<td>Fixed inclinometer casing connection (top) and telescopic connection (bottom)</td>
<td>72</td>
</tr>
<tr>
<td>3.45</td>
<td>Inclinometer casing installed and grouted on an oversized borehole (exaggerated)</td>
<td>75</td>
</tr>
<tr>
<td>3.46</td>
<td>Very poorly grouted hole with grout voids shearing on slip zone through D</td>
<td>76</td>
</tr>
<tr>
<td>3.47</td>
<td>Inclinometer casing/grout relationship where the casing is on the side not being pushed</td>
<td>77</td>
</tr>
<tr>
<td>3.48</td>
<td>Simplified plastic flow of settlement round inclinometer casing (very unlikely)</td>
<td>77</td>
</tr>
<tr>
<td>3.49</td>
<td>Cutaway view of an in-place inclinometer reading unit</td>
<td>79</td>
</tr>
<tr>
<td>3.50</td>
<td>Chain of in-place inclinometers from the top of the borehole</td>
<td>79</td>
</tr>
<tr>
<td>3.51</td>
<td>HPGs in a road/railway embankment</td>
<td>81</td>
</tr>
<tr>
<td>3.52</td>
<td>HPG in a dam body</td>
<td>81</td>
</tr>
<tr>
<td>3.53</td>
<td>Inclinometers and horizontal profile systems in retaining wall construction</td>
<td>82</td>
</tr>
</tbody>
</table>
3.54 HPGs associated with compensation grouting during tunnel construction
3.55 Very simplified slip circular failure
3.56 Horizontal movement contours for an idealised circular slip (Figure 3.55)
3.57 Vertical movement contours for an idealised circular slip (Figure 3.55)
3.58 Realistic contours of horizontal displacement
3.59 Idealised deformed blocks for a cantilever retaining wall
3.60 Idealised horizontal displacement contours for a cantilever wall
3.61 Displacement points from three inclinometer/settlement systems
3.62 Displaced rectangular element from Figure 3.61
3.63 Four original triangular elements
3.64 Bodily displacement of the triangular element
3.65 Bodily rotation and shear distortion of a triangular element
3.66 Idealised shear stress and shear strains in a square element
3.67 Mohr circle of strain
3.68 Corresponding Mohr circle of stress
3.69 Nominal strain and shear within the triangle 3A–4A–4B when all body displacements are removed
3.70 Mohr circle of strain for the triangular elements
3.71 Mohr circle of strain identifying planes of potential failure
3.72 Shear deformation on failure planes
3.73 Elements available from a comprehensive array of inclinometer/settlement units (7 in number)
3.74 Complete set of data available from a comprehensive instrument system
3.75 Complete set of data available from a comprehensive instrument system
4.1 Components of a vibrating wire unit
4.2 Basic vibrating wire layout with flexing diaphragm at end B
4.3 Simplified section through a diaphragm unit measuring load or pressure changes at end B
4.4 Deflection of diaphragm. End B
4.5 Tensile large strain gauge
4.6 Compressive/tensile small strain gauge
4.7 Diaphragm under internal and external (applied) pressure
4.8 Section through a piezometer
4.9 Heavy-duty piezometer incorporating a vibrating wire insert
4.10 A spring-controlled vibrating wire instrument
4.11 Embedded concrete strain gauge
4.12 ‘Sister bar’
4.13 Section through part of a heavy-duty load cell
4.14 Diaphragm (oil-filled) pressure cell
4.15 Ideal linear strain measurements to determine the full two-dimensional field
4.16 Layout of vibrating wire pressure cells in a pit
4.17 Three-dimensional array
4.18 Three-dimensional stress measurement in soil
4.19 The Mohr circle of stress
4.20 The Mohr circle of strain
4.21 Orientation of a strain gauge rosette and the planes across which nominal strain acts giving rise to revised nomenclature of the strains
4.22 Typical load cell arrangement on a tension anchor
4.23 Progress of a Griffith’s crack
4.24 Typical Georgian facade (brick/stucco faced) with inadequate brick foundations
4.25 Deformation between loaded columns
4.26 Inverted brick arches
4.27 Differential movements due to tunnelling
4.28 A simple tension crack monitor
4.29 Shear and tensile crack monitoring
4.30 Three-dimensional crack monitoring – example A
4.31 Three-dimensional crack monitoring – example B
4.32 An example of simple tension crack monitoring
4.33 An example of transverse and aligned displacement crack monitoring
4.34 An example of a three-dimensional crack meter
5.1 Typical modern ‘total station’ (courtesy Leica Geosystems)
5.2 Vertical section of a sight line
5.3 Plan of a sight line
5.4 Isometric drawing of the reference points
5.5 Plan view of the reference points
5.6 Isometric diagram of reciprocal sights from reference stations
5.7 Plan view of Figure 5.6
5.8 Correction for North reference angle
5.9 Inclusion of distance error band
5.10 Corrected northings and eastings of the ATS
5.11 The facade of St Pancras Station in London monitored as part of a new London Underground ticket hall excavation below it
5.12 Traditional tunnelling beneath a live railway track
5.13 Jack box tunnelling beneath a working station
5.14 Diagram of a reflecting prism
5.15 Cross-section through a triple prism
5.16 True and apparent recognition of prism centres
5.17 Prism showing the light path
5.18 Deviation of the axis in dependence of the misalignment
5.19 Typical prism in mount attached to a wall
5.20 A prism mounted on a pandrol clip
5.21 Track monitoring (note: track distortion exaggerated)
5.22 View from the ATS station of four arrays of reflections showing multiple prism interference
5.23 Diagrammatic representation of the reflected locations for a single sweep
5.24 Diagrammatic representation of the development of surfaces with multiple sweeps
5.25 The Faro Photon 120/20 laser scanner
6.1 Part of an installed BCS
6.2 Components of the BCS
6.3 BCS with bent long bar
6.4 Reference pin
6.5 Basic rotation and extension to P2
6.6 Insertion of the cam C to P1–P2
6.7 Action of BCS from P2 to P2'
6.8 Key angles for P2 to P2'
6.9 Displacements P2 to P2'
6.10 Rotation of the cam from P2 to P2'
6.11 Displacement from P2' to P2''
6.12 Summed displacement from P2' to P2''
6.13 Completely closed BCS
6.14 An installed BCS system
6.15 An installed BCS system (detail view)
6.16 Data from a BCS system – cross-sectional plot of processed data
6.17 Data from a BCS system – normal vector displacements of an individual monitoring point
6.18 Data from a BCS system – extreme displacements of a lined rock tunnel subjected to an adjacent blast (on the right-hand-side)
6.19 Time movements of an individual monitoring point before, during and after the blast
6.20 The data from Figure 6.19 with the permanent offsets experienced during previous blasts added
6.21 Key locations of deformation in a tunnel approaching failure
6.22 The rate of crown movement with time
6.23 Sketch of a fibre-optic system
6.24 Etched pattern on the fibre-optic cable (diagrammatic)
6.25 Laser input/transmitted and reflected signals at one BRAGG
6.26 Response/frequency curve for a unique BRAGG
6.27 Frequency shift on a single BRAGG
6.28 Fibre-optic cables located on an inclinometer casing
6.29 Strain measured in the three BRAGGs
6.30 Diagrammatic representation of the bending strains round the tube (drawn inward (compression) from the inner perimeter)
6.31 Determination of the bending axis by linear strain distribution
6.32 Diagrammatic relationship between measured maximum strain \(E_{\text{max}} \) and R
6.33 Diagrammatic illustration of unmeasured angle changes using fibre-optic strains
7.1 An idealised settlement trough
7.2 An idealised settlement trough
7.3 Simplified inverted error curve
7.4 Displacement vectors in the vicinity of tunnel construction
7.5 The relationship between trench width and depth of tunnel (clays)
7.6 The relationship between trench width and depth of tunnel (sands)
7.7 Variation of i below ground level for adjusting the settlement trough with depth
7.8 Boscardin and Cording damage assessment diagram
7.9 Trough distortion
7.10 Angular distortion versus horizontal location
7.11 Division of a tunnel into sectional blocks
7.12 Settlement conic for element 3
7.13 Assessment of component of horizontal strain
7.14 Equal area elements
7.15 Deformed mesh
7.16 Displacement vectors
7.17 Vertical displacements
7.18 Horizontal displacements
7.19 Zero extension directions (potential failure planes)
7.20 Finite element mesh for a wall/tunnel interaction problem
7.21 Shear strain data for a pile/tunnel interaction: (a) finite element analysis, (b) physical model
7.22 A digital tape extensometer
7.23 Typical tape extensometer monitoring array
7.24 The Mansion House, London, basement
7.25 Typical layout of inclinometers, settlement gauges and piezometers around a trial tunnel
7.26 Potential 45° inclined inclinometer layout
7.27 Survey levelling points at the Mansion House
7.28 Developing settlement trough at the Mansion House, approaching
7.29 Developing settlement trough at the Mansion House, at completion of tunnelling
7.30 Mansion House area global settlement as a three-dimensional plot
7.31 Contours of settlement inside the Mansion House
7.32 Idealised layout of part of a sensitive structure
7.33 Vertical electrolevel/MEMS beam
7.34 Idealised output for building data, level profile (raw data)
7.35 Settlement profile at \(t_N \)
7.36 Curvature profile (angle of distortion) at \(t_N \)
7.37 Change in angle of distortion at location 6 up to time \(t_N \)
7.38 Idealised angle of distortion (curvature)
7.39 and 40 Change in angle of distortion \(\beta \) with time and change in \(\Delta \beta/\Delta t \) with time
7.41 Compensation grouting layout
7.42 Vertical section through the instrumentation array
8.1 A vibrating wire readout/recorder
8.2 Section though a typical high-quality instrumentation cable
8.3 Typical star network
Table

7.1 Data ranges for the 'volume loss' typically experienced in tunnel monitoring 173