Stability and Seismic Resistance of Buttress Dams

N.S. MOTSONELIDZE

RUSSIAN TRANSLATIONS SERIES
58

1987
A.A. BALKEMA/ROTTERDAM
Contents

FOREWORD .. vii
INTRODUCTION ... 1

PART I. MATRIX METHODS FOR STABILITY ANALYSIS OF BUTTRESS DAMS

CHAPTER 1. BRIEF OUTLINE OF THE THEORY OF MATRIX ANALYSIS AND CERTAIN SPECIAL MATRICES .. 7

1.1. Fundamental Principles and Definitions 7

1.2. Special Matrices Used in Smirnov’s Theory 13
 a. Bending moment coefficient matrices 13
 b. Elastic load matrices .. 16

CHAPTER 2. TYPES OF BUTTRESS DAMS AND METHODS OF ANALYZING THEIR STABILITY ... 22

2.1. Structural Features of Buttress Dams 22

2.2. Elementary Methods of Stability Analysis of Buttress Dams 25
 a. Chambaud’s method .. 26
 b. Rozanov’s method .. 27

CHAPTER 3. MATRIX METHODS OF SOLVING IDEALIZED PROBLEMS OF THE STABILITY OF BUTTRESS DAMS AGAINST BUCKLING 29

3.1. Solving the Problem of the Stability of a Buttress with Bracing Struts by Substituting for the Elemental Strip a
Symmetrically Loaded Bar of Double the Length (Scheme 1) ... 29

a. Derivation of buttress stability equations ... 29

b. Determination of stiffness coefficients of bracing struts and rotational stiffnesses of their connections with buttresses ... 38

c. Compressive load distribution diagram ... 40

3.2. Solving the Idealized Problem of the Stability of a Buttress, Considering the Elasticity at the Base ... 41

3.3. Generalized Version of Solution of Idealized Problem of the Stability of a Buttress (Scheme 2) ... 44

a. Derivation of stability equations ... 44

b. Consideration of elasticity at the base ... 50

3.4. Derivation of Approximate Formulas for Critical Loads for a Buttress of Constant Thickness Having No Bracing Struts ... 51

CHAPTER 4. STABILITY OF HOLLOW, UNIFORM-STRENGTH, ANCHORED AND THROUGH BUTTRESSES ... 55

4.1. Solution of the Idealized Problem of the Stability of Hollow Buttresses ... 55

a. Hollow buttresses with horizontal stiffening slabs ... 55

b. Hollow buttresses with inclined stiffening slabs ... 59

c. Hollow (double-walled) buttresses without internal diaphragms ... 61

4.2. Stability of Buttresses of Uniform Strength ... 63

4.3. Stability of Anchored Buttresses ... 68

4.4. Stability of Through Type Buttresses ... 71

a. Slab and column type buttresses with inclined columns ... 72

b. Reinforced concrete lattice type buttresses of the triangular lattice frame type (Ladygin's system) ... 79
CHAPTER 5. EXAMPLES OF STABILITY ANALYSIS OF BUTTRESS DAMS BY APPROXIMATE METHODS

5.1. Stability of High Reinforced Concrete Buttress Dam with Split Slab Deck
 a. Buttress of varying thickness without stiffening elements
 b. Buttress of varying thickness with stiffening ribs
 c. Buttress of varying thickness with bracing struts

5.2. Stability of High Reinforced Concrete Buttress Dam with Split Slab Decks, Considering Elasticity at the Base

CHAPTER 6. THREE-DIMENSIONAL STABILITY ANALYSIS OF BUTTRESS DAMS USING DISCRETE SYSTEMS

6.1. Statement of the Problem of the Three-Dimensional Stability of Buttresses with Bracing Struts

6.2. Development of Basic Relationships for the Discrete System
 a. Equations of principal loads
 b. Resolution of unit forces applied to the intersecting strips at points of intersection with strip I in the principal direction
 c. Resolution of unit forces applied to the intersecting strips at points of intersection with strip II in the principal direction
 d. Resolution of unit forces applied to the intersecting strips at points of intersection with strip III in the principal direction
 e. Stiffness coefficients of strips in the principal direction
 f. Stiffness coefficients of elastic supports (intersecting strips) of equivalent strip in the principal direction

6.3. Derivation of Equations for Analysis of Continuous Buttresses without Bracing Struts
 a. Resolution of unit loads $R_{31} = 1$, $R_{21} = 1$ and $R_{11} = 1$, applied to intersecting strips at the points of intersection with strip in the principal direction I
b. Computation of stiffness coefficients of strips in the principal direction ... 123

c. Determination of resultant stiffness coefficients of elastic supports of equivalent strip in the principal direction ... 124

6.4. Derivation of Equations to Determine Reactions of Elastic Supports of Intersecting Strips ... 128

6.5. Equations for Calculating Unit Displacement of the Elements of a Mutually Intersecting System ... 130

6.6. Stability Analysis of 'Equivalent' Buttress under Different End Conditions ... 130

 a. Equivalent buttress with hinged ends ... 130

 b. Equivalent buttress with elastically or rigidly fixed lower end and hinged upper end ... 136

 c. Equivalent buttress with both ends elastically or rigidly fixed ... 141

CHAPTER 7. AN EXAMPLE OF THREE-DIMENSIONAL STABILITY ANALYSIS OF A BUTTRESS BY THE METHOD OF MUTUALLY INTERSECTING BARS ... 147

7.1. Derivation of Formulas for Three-Dimensional Stability Analysis of the Model of a Buttress Dam Used for Tests by Rozanov ... 147

7.2. Stability Analysis of Equivalent Buttress of Model Dam Using Scheme 1 ... 163

7.3. Comparison of the Results of Theoretical Three-Dimensional Analysis with Experimental Data ... 167

PART II. MATRIX METHODS FOR SEISMIC ANALYSIS OF BUTTRESS DAMS

CHAPTER 8. ANALYSIS OF BUTTRESS DAMS FOR SEISMIC FORCES DIRECTED ALONG THE GORGE ... 171

8.1. Present Status of the Problem of Seismic Resistance of Buttress Dams ... 171
8.2. Dynamic Method of Determining Seismic Loads .. 173
8.3. Unified Method of Studying the Free Vibrations of Buttresses of Dams with Round-Head, Multiple-Arch or Flat-Slab Decks, along the Gorge .. 175
8.4. Analysis of Free Vibrations of a Buttress Considering Elasticity at the Base .. 187
8.5. Additional Remarks on the Dynamic Analysis of Buttress Dams with Multiple-Arch and Flat-Slab Decks .. 193
8.6. Free Vibrations of the Buttress-Wedge in Its Own Plane .. 197
 a. Determination of the natural frequency of a wedge considering deformations due to bending .. 197
 b. Determination of the natural frequency of a wedge considering deformations due to bending and shear simultaneously .. 201
8.7. Analysis of a Buttress-Wedge of Varying Thickness .. 206

CHAPTER 9. ANALYSIS OF BUTTRESS DAMS FOR SEISMIC FORCES DIRECTED ACROSS THE GORGE (LATERAL SHOCKS) .. 210
9.1. Free Vibrations of a Buttress with Bracing Struts, Neglecting the Effect of the Deck .. 210
9.2. Free Vibrations of a Buttress without Bracing Struts .. 212
9.3. Dynamic Schemes for Analysis of Buttresses of Multiple-Arch Dams .. 213
9.4. Free Vibrations of Independent Round-Head Buttresses .. 214
9.5. Consideration of Elasticity at the Base when Determining the Natural Frequency of Vibrations of a Buttress across the Gorge .. 215
9.6. Analysis of Symmetrical (or Near-Symmetrical) Buttresses for Lateral Shocks Using the Cantilever Dynamic Scheme .. 216
9.7. Free Vibrations of the Buttress across the Gorge Considering the Effect of the Deck (Statically Indeterminate Schemes) .. 217
9.8. Approximate Formulas for Determining the Fundamental Natural Frequencies of Continuous and Through Type Buttresses ... 219

9.9. Discrete Method of Determining Frequencies and Modes of Free Vibrations of the Walls of Massive Buttress Dams ... 227

CHAPTER 10. ANALYSIS OF REAL MASSIVE BUTTRESS DAMS WITH HOLLOW BUTTRESSES FOR SEISMIC EFFECTS ... 230

10.1. Initial Data ... 230

10.2. Determination of the Natural Frequency of Vibrations of the Section of the Dam in Its Own Plane (along the Gorge) Considering Fixity at the Base ... 230

10.3. Determination of the Natural Frequency of Vibrations of the Section of the Dam in Its Own Plane, Considering Elasticity at the Base ... 236
 a. When $E_{os} = E_{pl}$... 236
 b. When $E_{os} = 1.2 E_{pl}$... 239

10.4. Determination of the Natural Frequency of the Sections of the Dam Considering the Compressive Load and the Elasticity at the Base ... 239

10.5. Determination of the Stresses in the Section of the Dam due to Seismic Forces Directed along the Gorge ... 243
 a. Determination of coordinates of eigenvectors ... 243
 b. Determination of seismic forces ... 244
 c. Determination of seismic stresses ... 248

10.6. Determination of the Natural Frequency of Independent Sections of the Dam across the Gorge, Considering Fixity at the Base ... 253

10.7. Determination of the Natural Frequency of Sections of the Dam across the Gorge, Considering Elasticity at the Base ... 256
 a. Case where $E_{os} = E_{pl}$... 256
 b. Case where $E_{os} = 0.2 E_{pl}$... 258
10.8. Determination of the Stresses in the Section of the Dam due to Seismic Forces Directed across the Gorge ... 259

10.9. Determination of Frequencies and Modes of Free Vibrations of the Walls (Slabs) of Buttresses ... 262
 a. Formulation of the initial matrices ... 262
 b. Computation of natural frequencies and coordinates of eigenvectors ... 266

10.10. Some Considerations Arising out of Theoretical Seismic Analyses of Real Massive Buttress Dams ... 269

REFERENCES ... 273