Stability and Seismic Resistance of Buttress Dams

N.S. MOTSONELIDZE

RUSSIAN TRANSLATIONS SERIES 58

1987 A.A. BALKEMA/ROTTERDAM

Contents

FOREWORD		vii
INTRODUCTION		1
PART I. MATRIX METHODS FOR STABILITY AN OF BUTTRESS DAMS	ALYSIS	
CHAPTER 1. BRIEF OUTLINE OF THE THEORY OF MATRIX ANALYSIS AND CERTAIN SPECIAL MATRICES		7
1.1. Fundamental Principles and Definitions		7
1.2. Special Matrices Used in Smirnov's Theory	699	13
a. Bending moment coefficient matrices		13
b. Elastic load matrices		16
CHAPTER 2. TYPES OF BUTTRESS DAMS AND METHODS OF ANALYZING THEIR STABILITY	unitati i	22
2.1. Structural Features of Buttress Dams		22
2.2. Elementary Methods of Stability Analysis of Buttress Dams	ж. 	25
a. Chambaud's method		26
b. Rozanov's method		27
CHAPTER 3. MATRIX METHODS OF SOLVING IDEALIZED PROBLEMS OF THE STABILITY OF BUTTRESS DAMS AGAINST BUCKLING	n kaski (s Indase (s Indase (s	29
3.1 Solving the Problem of the Stability of a Buttress with	1	

Bracing Struts by Substituting for the Elemental Strip a

	Symmetrically Loaded Bar of Double the Length (Scheme 1)		29
	a. Derivation of buttress stability equations	•	29
	b. Determination of stiffness coefficients of bracing struts and rotational stiffnesses of their connections with buttresses		38
	c. Compressive load distribution diagram		40
3.2.	Solving the Idealized Problem of the Stability of a Buttress, Considering the Elasticity at the Base		41
3.3.	Generalized Version of Solution of Idealized Problem of the Stability of a Buttress (Scheme 2)		44
	a. Derivation of stability equations		44
	b. Consideration of elasticity at the base		50
3.4.	Derivation of Approximate Formulas for Critical Loads for a Buttress of Constant Thickness Having No		
	Bracing Struts		51
СНАР	TER 4. STABILITY OF HOLLOW, UNIFORM- STRENGTH, ANCHORED AND THROUGH BUTTRESSES		55
4.1.	Solution of the Idealized Problem of the Stability of Hollow Buttresses		55
	a. Hollow buttresses with horizontal stiffening slabs		55
	b. Hollow buttresses with inclined stiffening slabs	,	59
	c. Hollow (double-walled) buttresses without internal diaphragms		61
4.2.	Stability of Buttresses of Uniform Strength		63
4.3.	Stability of Anchored Buttresses	199	68
4.4.	Stability of Through Type Buttresses		71
	a. Slab and column type buttresses with inclined columns		72
	b. Reinforced concrete lattice type buttresses of the triangular lattice frame type (Ladygin's system)	611	79

x

CHAP	ER 5. EXAMPLES OF STABILITY ANALYSIS OF BUTTRESS DAMS BY APPROXIMATE METHODS		85
5.1.	Stability of High Reinforced Concrete Buttress Dam with Split Slab Deck		85
	a. Buttress of varying thickness without stiffening elements		85
	b. Buttress of varying thickness with stiffening ribs		88
	c. Buttress of varying thickness with bracing struts		90
5.2.	Stability of High Reinforced Concrete Buttress Dam with Split Slab Decks, Considering Elasticity at the Base		95
CHAPT	ER 6. THREE-DIMENSIONAL STABILITY ANALYSIS OF BUTTRESS DAMS USING DISCRETE SYSTEMS	••••	100
6.1.	Statement of the Problem of the Three-Dimensional Stability of Buttresses with Bracing Struts		100
6.2.	Development of Basic Relationships for the Discrete System	•••	101
	a. Equations of principal loads		103
	b. Resolution of unit forces applied to the intersecting strips at points of intersection with strip I in the principal direction	k	107
	c. Resolution of unit forces applied to the intersecting strips at points of intersection with strip II in the principal direction		109
	d. Resolution of unit forces applied to the intersecting strips at points of intersection with strip III in the principal direction		109
	e. Stiffness coefficients of strips in the principal direction		110
	f. Stiffness coefficients of elastic supports (intersecting strips) of equivalent strip in the principal direction		110
6.3.	Derivation of Equations for Analysis of Continuous Buttresses without Bracing Struts		120
	a. Resolution of unit loads $R_{31} = 1$, $R_{21} = 1$ and $R_{11} = 1$, applied to intersecting strips at the points of inter- section with strip in the principal direction I	64 4 	120

xi

	b. Computation of stiffness coefficients of strips in the principal direction		123
	c. Determination of resultant stiffness coefficients of elastic supports of equivalent strip in the principal direction		124
6.4.	Derivation of Equations to Determine Reactions of Elastic Supports of Intersecting Strips		128
6.5.	Equations for Calculating Unit Displacement of the Elements of a Mutually Intersecting System		130
6.6.	Stability Analysis of 'Equivalent' Buttress under Different End Conditions	hje s Jene e	130
	a: Equivalent buttress with hinged ends		130
	b. Equivalent buttress with elastically or rigidly fixed lower end and hinged upper end		136
	c. Equivalent buttress with both ends elastically or rigidly fixed	sevel) sevel	141
CHAPT	TER 7. AN EXAMPLE OF THREE-DIMENSIONAL STABILITY ANALYSIS OF A BUTTRESS BY THE METHOD OF MUTUALLY INTERSECTING BARS	1-1-1- 1-1-1- 1-1-1-1-	147
7.1.	Derivation of Formulas for Three-Dimensional Stability Analysis of the Model of a Buttress Dam Used for Tests by Rozanov		147
7.2.	Stability Analysis of Equivalent Buttress of Model Dam Using Scheme 1		163
7.3.	Comparison of the Results of Theoretical Three- Dimensional Analysis with Experimental Data		167
	PART II. MATRIX METHODS FOR SEISMIC ANALYSIS OF BUTTRESS DAMS		64°
CHAPT	TER 8. ANALYSIS OF BUTTRESS DAMS FOR SEISMIC FORCES DIRECTED ALONG THE GORGE		171
8.1.	Present Status of the Problem of Seismic Resistance of Buttress Dams	•••	171

xii

				xiii
8.2.	Dynamic Method of Determining Seismic Loads			173
8.3.	Unified Method of Studying the Free Vibrations of Buttresses of Dams with Round-Head, Multiple-Arch or Flat-Slab Decks, along the Gorge			175
8.4.	Analysis of Free Vibrations of a Buttress Considering Elasticity at the Base	•••	•	187
8.5.	Additional Remarks on the Dynamic Analysis of Buttress Dams with Multiple-Arch and Flat-Slab Decks			193
8.6.	Free Vibrations of the Buttress-Wedge in Its Own Plane			197
	a. Determination of the natural frequency of a wedge considering deformations due to bending			197
	b. Determination of the natural frequency of a wedge considering deformations due to bending and shear simultaneously		1	201
8.7.	Analysis of a Buttress-Wedge of Varying Thickness	110		206
 1AP	SEISMIC FORCES DIRECTED ACROSS THE GORGE (LATERAL SHOCKS)		•	210
9.1.	Free Vibrations of a Buttress with Bracing Struts, Neglecting the Effect of the Deck			210
9.2.	Free Vibrations of a Buttress without Bracing Struts	s.1.		212
9.3.	Dynamic Schemes for Analysis of Buttresses of Multiple-Arch Dams			213
9.4.	Free Vibrations of Independent Round-Head Buttresses			214
9.5.	Consideration of Elasticity at the Base when Determining the Natural Frequency of Vibrations of a Buttress across the Gorge	Dec l	0.9	215
9.6.	Analysis of Symmetrical (or Near-Symmetrical) Buttresses for Lateral Shocks Using the Cantilever			216
9.7.	Free Vibrations of the Buttress across the Gorge Considering the Effect of the Deck (Statically	600	•	
	Indeterminate Schemes)			217

9.8.	Approximate Formulas for Determining the Fundamental Natural Frequencies of Continuous and Through Type Buttresses			219
9.9.	Discrete Method of Determining Frequencies and Modes of Free Vibrations of the Walls of Massive Buttress Dams	,	•	227
CHAPT	TER 10. ANALYSIS OF REAL MASSIVE BUTTRESS DAMS WITH HOLLOW BUTTRESSES FOR SEISMIC EFFECTS		•	230
10.1.	Initial Data			230
10.2.	Determination of the Natural Frequency of Vibrations of the Section of the Dam in Its Own Plane (along the Gorge) Considering Fixity at the Base			230
10.3.	Determination of the Natural Frequency of Vibrations of the Section of the Dam in Its Own Plane, Considering Elasticity at the Base			236
	a. When $E_{os} = E_{p1}$			236
	b. When $E_{os} = 1.2 E_{p1}$			239
10.4.	Determination of the Natural Frequency of the Sections of the Dam Considering the Compressive Load and the Elasticity at the Base			239
10.5.	Determination of the Stresses in the Section of the Dam due to Seismic Forces Directed along the Gorge		•	243
	a. Determination of coordinates of eigenvectors			243
	b. Determination of seismic forces			244
	c. Determination of seismic stresses	•		248
10.6.	Determination of the Natural Frequency of Independent Sections of the Dam across the Gorge, Considering Fixity at the Base			253
10.7.	Determination of the Natural Frequency of Sections of the Dam across the Gorge, Considering Elasticity at the Base		·	256
	a. Case where $E_{os} = E_{pl}$			256
	b. Case where $E_{os} = 0.2 E_{pl}$			258

xiv

10.8.	Determination of the Stresses in the Section of the Dam				250
10.9.	Determination of Frequencies and Modes of Free			•	200
	a. Formulation of the initial matrices	•	5 (G 30	•	262 262
	b. Computation of natural frequencies and coordinates of eigenvectors		•	4	266
10.10.	Some Considerations Arising out of Theoretical Seismic Analyses of Real Massive Buttress Dams				269
REFER	RENCES				273

xv