THEORETICAL FOUNDATION ENGINEERING

BRAJA M. DAS, Ph.D.

Department of Civil Engineering & Mechanics, Southern Illinois University of Carbondale, Carbondale, IL, U.S.A.

ELSEVIER
Amsterdam — Oxford — New York — Tokyo

CONTENTS

Preface			vii
CHAPTER 1	LATERAL EARTH PRESSURE		
	1.1	Introduction	1
	1.2	At-Rest Earth Pressure	3
	1.3	At-Rest Force and Resultant	7
	1.4	Rankine Active Pressure (Rotation about	
		Bottom of Wall)	13
	1.5	Active Pressure with Wall Friction	
		Coulomb's Active Pressure Theory	23
	1.6	Graphical Solutions for Coulomb's Active	
		Force	29
	1.7	Graphical Procedure for Coulomb's Active	
		Force for a c-o Soil Backfill	33
	1.8	Active Earth Pressure for Backfill with	
		Vertical Drain	35
	1.9	Wall Rotation Required for Active Earth	
		Pressure Condition	37
	1.10	Active Force on Wall with Rotation about	
		Тор	38
		1.10.1 Dubrova's Solution	40
		1.10.2 Terzaghi's General Wedge Theory	4.3
		1.10.3 Empirical Pressure Diagrams for	
		Design of Braced Cuts	49
	1.11	Active Earth Pressure for Lateral	
		Translation of Wall	50
	1.12	Rankine Passive Pressure (Rotation about	
		the Rottom of the Wall)	56

XI

	1.13	Passive Pressure with Wall Friction	
		(Coulomb's Passive Pressure)	63
	1.14	Passive Pressure by Using Curved Failure	
		Surface	6.5
	1.15	Other Solutions for Passive Pressure	
		(Rotation about the Bottom)	70
	1.16	Dubrova's Method for Calculation of	
		Passive Pressure Distribution	76
	1.17	Experimental Results for Passive Pressure	78
	1.18	Wall Rotation Required for Passive Earth	
		Pressure Condition	80
	1.19	Stability of Slurry Trench Cuts in	
		Saturated Clay	81
	1.20	Stability of Unsupported Axisymmetric	
		Excavations in Saturated Clay	84
	1.21	Lateral Earth Pressure on Linings of	
		Circular Shafts in Sand	86
	1.22	Lateral Earth Pressure on Linings of	
		Circular Shafts in Saturated Clay	96
	Refer	ences	100
CHAPTER 2	SHEET	PILE WALLS	103
	2.1	Introduction	103
	2.2	Types of Sheet Pile Walls	104
	2.3	Anchors in Sheet Pile Wall Design	108
	2.4	Construction Methods for Sheet Pile Walls	109
	2.5	Lateral Earth PressureGeneral	
		Considerations	111
	2.6	Cantilever Sheet Pile Walls Penetrating	
		into Sand	114
	2.7	Cantilever Sheet Pile Walls Penetrating	
		into Clay Layer	126
	2.8	Anchored Sheet Pile Wall Penetrating	
		into SandFree Earth Support Method	131
	2.9	Lateral Earth Pressure Due to Strip Load	
		Near a Wall	133
	2.10	Rowe's Moment Reduction Method	135
	2.11	Anchored Sheet Pile Wall with Sloping	
		Dredge Line	140
	2.12	Computational Pressure Diagram Method	141

			- 1
	4.1	Introduction	206
	4.2	Types of Bearing Capacity Failure	206
	4.3	Terzaghi's Bearing Capacity Theory	210
	4.4	Some Observations on Terzaghi's Bearing	
		Capacity Theory	221
	4.5	Meyerhof's Bearing Capacity Theory	224
	4.6	General Bearing Capacity Equation	237
	4.7	Other Solutions for Bearing Capacity	1
		Factors	241
	4.8	Effect of Water Table	248
	4.9	Bearing Capacity of Foundations on	
		Anisotropic Soil Extending to a Great	10.444
		Depth	249
	4.10	Ultimate Bearing Capacity Due to Vertical	10.15
		Eccentric Load	260
	4.11	Foundations Supported by a Soil with a	1
		Rigid Rough Base at a Limited Depth	277
	4.12	Bearing Capacity of Foundations on Slopes	283
	4.13	Bearing Capacity of Foundations on	
		Layered Soil	286
	4.14	Continuous Foundation on Weak Clay with	
		a Granular Trench	317
	4.15	Shallow Foundation Above Voids	322
	4.16	Interference of Shallow Continuous	
		Foundation in Granular Soil	325
	4.17	Foundation Settlement	330
	Refer	ences	339
CHAPTER 5	SLOPE	STABILITY	342
	5.1	Introduction	342
	5.2	Factor of SafetyDefinition	344
	5.3	Stability of Finite Slopes (c-\$\phi\$ Soil)	
		Plane Failure Surface	346
	5.4	Stability of Clay Slopes (\$\phi=0\$ Condition)	350
	5.5	Clay Slopes with Aniostropic Strength	
		Properties (\$\phi = 0\$ Condition)	356
	5.6	Stability of Slopes in Clay (\$\phi=0\$	- 4.2
	G#10#7/#1	Condition) with c_{11} Increasing with Depth	361
	5.7	Stability of Finite Slopes with $c-\phi$	
		SoilsMass Procedure	365

		5.7.1	Taylor's Friction Circle Method	366
		5.7.2	Cousins' Stability Analysis	775
			(c-¢ Soil)	375
5.8	Method	385		
		5.8.1	Ordinary Method of Slices	386
		5.8.2	Bishop's Simplified Method of	390
		- 0 7	Slices Bishop and Morgenstern's Method	9.5.0
		5.8.3	of Slices	391
		5.8.4	Morgenstern's Method of Slices	
		3.0.	for Rapid Drawdown Condition	398
		5.8.5	Spencer's Method of Slices	399
	5.9	Limit /	Analysis Solutions for Slopes	413
5.10				
		Cycloid	416	
		5.10.1	Calculation of the Side Slopes	
			for Ditch with Deeper Cuts	422
	Refer	rences		424
PPENDIX			THOD FOR FINDING STRESSES FROM	426
	MOHI	R'S CIRC	LE	420
PENDIX	B PROF	PERTIES	OF LOGARITHMIC SPIRALS AND	
			SPIRAL SECTORS	429
DENDIN	0 1151	T CAL ANG	Hone	434
PENDIX	C HEL	ICAL ANC	CNUN	474
NDEX				436

XIII

(5.129).

Example 5.11. Refer to Example 5.10. Other quantities remaining the same, if H=3 m determine β_{CT} .

Solution.

$$\theta = \cos^{-1}\left[1 - \left(\frac{H\gamma}{\sigma}\right) \frac{(1-\sin\phi)}{2\tan^2(45+\phi/2)}\right]$$

$$\theta = \cos^{-1} \left[1 - \frac{(3)(17.5)}{16} \frac{1 - \sin 12^{\circ}}{2 \tan^{2}(45 + 12/2)} \right]$$
$$= \cos^{-1} \left[1 - \frac{(3.281)(0.792)}{3.05} \right] = \cos^{-1}(0.148) = 81.49^{\circ}$$

However

$$\theta_{c} = 90 - \phi = 90 - 12 = 68^{\circ}$$

So, $\theta > \theta_c$. Now, $\theta = 81.49^\circ = \theta''$. Substituting $\phi = 12^\circ$ and $\theta'' = 81.49^\circ$ in Eq. (5.130) gives

$$\beta_{\text{Cr}} = \tan^{-1} \left\{ \frac{(3)(17.5)}{16} \times \frac{\cos 12(1-\sin 12)}{2(1+\sin 12) \left[(\frac{\pi}{180} 81.49) - \sin 81.49 - \pi/2 + (\frac{\pi}{180} 12) + \cos 12^{\circ}) \right] \right\}$$

$$= 87^{\circ}$$

References

Bishop, A.W., 1955. The use of the slip circle in the stability analysis of slopes. Geotechnique, 5(1):7-17.

Bishop, A.W. and Morgenstern, N.R., 1960. Stability coefficient of

earth slopes. Geotechnique, 10(4):129-150.

Casagrande, A. and Carrillo, N. 1944. Shear failure of anisotropic soils. J. Boston Soc. Civ. Eng. Contribution to Soil Mechanics 1941-1953.

Chen, W.F., 1970. Discussion. J. Soil Mech. Found. Div., ASCE, 96 (SM1):324-326.

Chen, W.F. and Giger, M.W., 1971. Limit analysis of stability of slopes. J. Soil Mech. Found. Div., ASCE, 97(SM1):19-26. Chen, W.F., Giger, M.W., and Fang, H.Y., 1969. On the limit analysis of stability of slopes. Soils and Foundations, 9(4):23-32. Chen, W.F., Snitbhan, N., and Fang, H.Y., 1975. Stability of

slopes in aniostropic nonhomogeneous soils. Canadian Geotech.

Cousins, B.F., 1978. Stability charts for simple earth slopes. J. Geotech. Eng. Div., ASCE, 104(GT2):267-279.

Culmann, K., 1866. Die graphische statik. Meyer and Zeller,

Zurich, Switzerland. Drucker, D.C. and Prager, W., 1952. Soil mechanics and plastic analysis of limit design. Q. Appl. Math. 10:157-165. Ellis, H.B., 1973. Use of cycloidal arcs for estimating ditch safety. J. Soil Mech. Found. Div., ASCE, 99(SM2):165-179. Fellenius, W., 1927. Erdstatische berechnungen. W. Ernst U. Sohn, Koppula, S.D., 1984. On stability of slopes on clays with linearly

increasing strength. Canadian Geotech. J., 21(3):577-581.
Lo, K.Y., 1965. Stability of slopes in anisotropic soils. J. Soil Mech. Found. Div., ASCE, 91(SM4):85-106.
Morgenstern, N., 1963. Stability charts for earth slopes during

rapid drawdown. Geotechnique, 13(2):121-131. O'Connor, M.J. and Mitchell, R.J., 1977. An extension of the

Bishop and Morgenstern slope stability charts. Canadian Geotech. J., 14(1):144-151.

Singh, A., 1970. Shear strength and stability of manmade slopes.

J. Soil Mech. Found. Div., ASCE, 96(SM6):1879-1892.

Spencer, E., 1969. Circular and logarithmic spiral slip surfaces. J. Soil Mech. Found. Div., ASCE, 95(SM1):227-234. Spencer, E., 1967. A method of analysis of the stability of em-

bankments assuming parallel inter-slice forces. Geotechnique, 17(1):11-26.

Taylor, D.W., 1937. Stability of earth slopes. J. Boston Soc.

Civ. Eng., 24:197-246.
Terzaghi, K., and Peck, R.B., 1967. Soil mechanics in engineering practice, 2nd ed. John Wiley and Sons, New York.