PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON MODELLING SOIL-WATER-STRUCTURE INTERACTIONS / DELFT / 29 AUGUST-2 SEPTEMBER 1988

Modelling Soil-Water-Structure Interactions SOWAS 88

Edited by
P.A.KOLKMAN
Delft Hydraulics
J.LINDENBERG
Delft Geotechnics
K.W.PILARCZYK
Rijkswaterstaat

Contents

Preface	lX
1. Soil-water-structure interactions	
An introduction to the SOWAS concept J.van der Weide	3
Are models of any use for the designer of civil structures (Keynote lecture) J.K.Vrijling	7
Features of soil behaviour in relation to soil-water-structure interaction (Keynote lecture) A.N.Schofield	17
2. Wave and current induced behaviour of the seabottom	
Estimation of seabed behaviour beneath a breakwater A.Sawicki, W.Świdziński & A.Walter	23
Lateral resistance and displacement patterns for cyclically loaded pipelines in sand inferred from model testing M.Jørgensen, J.O.Steensen-Bach & J.S.Steenfelt	33
Seabed movements and their effect on offshore structures G.L.van der Zwaag & A.J.van Seters	43
Seabed stability near floating structures W.Sulisz & W.G.McDougal	55
Effects of inertia and gravity on seabed response to ocean waves T.Sakai, H.Mase & A.Matsumoto	61
Settlement of a concrete block into a sand bed under water pressure variation S.Maeno & H.Nago	67
Wave and earthquake induced liquefaction potential of silty sand from sea bed N.R.Dhat, M.V.Chhatre, A.M.Vaidya, B.Murlidhar, S.T.Paliwal & S.L.Mokhashi	77
Mathematical modelling of water wave interactions with large offshore structures I.T.Selezov, VVYakovlev & A.V.P.vatetsky	85

3. Local scour

Models and scale effects related to erosion of granular dams S.P.Chee	93
Reliability of physical and mathematical modelling of local scour around circular bridge piers $M.Nouh$	99
Effect of supercritical flow on local scour downstream regulators M.Abdelsalam, M.Hammed, A.Khalifa & S.Kamel	109
Experimental study on horseshoe vortex in the upstream front of cylindrical structure $K.Kubo \& M.Takezawa$	117
Modelling local scour in light weight sediment N.O.Eisenhauer & G.M.Kley	127
Analytical approach to some practical aspects of local scour around bridge piers T.Tsujimoto	137
Local scour and scouring tests in a vicinity of large diameter offshore caisson J.Rytkönen	147
Scouring in movable bed expansions C.Fouladi	155
4. Behaviour and stability of block revetments and filter layers	
Stability against sliding of flexible revetments K.J.Bakker & P.Meijers	163
Erosion of sediment through cellular revetment blocks applied as slope protection along coasts and inland waterways M.Klein Breteler, J.H.Laboyrie & H.J.Verhey	173
The interaction between soil, water and bed or slope protection M.B.de Groot, A.Bezuijen, A.M.Burger & J.L.M.Konter	183
The permeability of closely placed blocks on gravel M.Klein Breteler & A.Bezuijen	199
Full-scale investigations on the stability of concrete block slope revetments A.Führböter & U.Sparboom	209
A computation method for the settlement of semi-stable filters M.A.Koenders & A.F.Williams	219
Internal stability of minestone H.den Adel, K.J.Bakker & M.Klein Breteler	225
5. Wave impact loads and behaviour of asphalt revetments	
Wave impact on slope revetment – A problem of long term stability W.Richwien & Th.Wehner	235

Shock pressure interactions on prototype sea dykes caused by breaking waves A.Führböter & U.Sparboom	243
Scale effects in modelling the stability of asphalt bed protections J.L.M.Konter & W.G.de Rijke	253
Anatomy of shock pressures (surface and sand core) induced by real sea state breaking waves $J.Gr\"{u}ne$	261
Effect of wave impact on asphalt revetments of Dutch sea dikes E.H.Ebbens, F.Molenkamp & P.Ruygrok	271
6. Piles, platforms, piers and gravity structures	
Numerical and physical modelling of piles behaviour under monotonous and cyclic loading $M.Boulon$	285
Verification of geotechnical design criteria for Eastern Scheldt storm surge barrier J.van Heteren, J.Lindenberg & H.A.M.Nelissen	295
Model studies and numerical analysis of pile-soil interaction of single and arrayed piles under static and dynamic loadings M.Gao, J.P.Tong & H.L.Fang	305
Displacement piles in granular soils with fluctuating pore water pressures and overburden pressures J.W.Armishaw	315
Modelling of the soil-structure interaction for a jack-up platform under storm loading with a cyclic elastoplastic soil model Y.Meimon, F.Lassoudière & C.Perol	325
Analysis of the nonlinear soil-structure interaction of offshore piles by an explicit finite element computer program N.F.F.Ebecken, L.Landau, A.L.G.A.Coutinho, J.L.D.Alves & A.M.da Costa	335
Models for soil-structure interaction of offshore structures H.Ramstad	343
7. Sand suppletion processes and flow slides	
On the construction of sand fill dams – Part 1: Hydraulic aspects D.R.Mastbergen, A.Bezuijen & J.C.Winterwerp	353
On the construction of sand fill dams – Part 2: Soil mechanical aspects A.Bezuijen & D.R.Mastbergen	363
An engineering approach to under water dumped sandbodies F.T.Heezen & A.C.M.van der Stap	373
A numerical model to describe the initiation of flow slides in under water sand slopes F.Silvis, J.Lindenberg & J.van Heteren	385

8. Breakwaters, dams and walls

Transient effects in geohydrological systems J.B.A.Weijers & F.B.J.Barends	395
Uplift pressure on a concrete spillway due to steady-state seepage in the foundation <i>E.C.Kalkani</i>	403
Interaction between concrete cutoff wall and core of rock-earth dams Pu Jia-Liu & Yu Qiong-Hua	409
Energy dissipation in rubble mound breakwaters M.Di Natale	417
Simulation of internal water movement in breakwaters P.Hölscher, M.B.de Groot & J.W.van der Meer	427
9. Miscellaneous	
Froude scale modelling for dynamically loaded saturated fine sand P.A.Kolkman	437
On the applicability of a quasi-linear finite element model to buoyancy flow in an artificial aquifer – Validation against field performance <i>H.Daniels</i>	449
Some aspects of coupled dynamics of towers H.A.Dieterman	459
An experimental study of shock-induced wave propagation in dry, water-saturated, and partially saturated porous media J.G.M.van der Grinten, R.W.J.M.Sniekers, M.E.H.van Dongen & H.van der Kogel	469
Emergency models to study the overtopping of a natural dam formed by a landslide: The case of Val Pola rockslide (Italy) M.Fanelli, G.Angelico, M.de Gerloni & P.Molinaro	479
Fabric reinforced embankment test section Plaquemines Parish, Louisiana J.Fowler, E.V.Edris Jr. & G.Comes	485
Interaction of outlet works and soil foundation in modelling V.Baronin, B.Dvorkin, U.Enguibaryan & S.Sidorova	495
The influence of sludge on support reactions during construction of the Emstunnel	501