SALINITY AND TIDES IN ALLUVIAL ESTUARIES

by

HUBERT H.G. SAVENIJE

Delft University of Technology 2600 GA Delft, The Netherlands

Amsterdam • Boston • Heidelberg • London • New York • Oxford Paris • San Diego • San Francisco • Singapore • Sydney • Tokyo

CONTENTS

Preface					
Not	ation				xi
1.0	Introduction: Description and Classification of Alluvial Estuaries				
	1.1	Impo	rtance of estuaries to mankind		2
	1.2	2 Classification of estuaries			4
	1.3	1.3 Estuary numbers			8
	1.4	4 Alluvial estuaries and their characteristics			10
		1.4.1	The shape of alluvial estuaries		11
		1.4.2	Dominant mixing processes		13
		1.4.3	How the tide propagates		14
		1.4.4	How the salt intrudes		17
	1.5	What	will follow		22
2.0	Tide and Estuary Shape				
	2.1	Hydr	aulic equations		24
		2.1.1	Basic equations		24
		2.1.2	The seventh equation		28
		2.1.3	The one-dimensional equations for depth and velocity		32
		2.1.4	The effect of density differences and tide		35
	2.2	The shape of alluvial estuaries			43
		2.2.1	Classification on estuary shape		43
		2.2.2	Assumptions on the shape of alluvial estuary		
			in coastal plains		48
		2.2.3	Assumptions on estuary shape in short estuaries		53
	2.3	Relat	ing tide to shape		56
		2.3.1	Why look for relations between tide and shape?		56
		2.3.2	Theoretical derivations		56
3.0	Tid	al Dyna	amics		69
	3.1	Tidal	movement and amplification		69
		3.1.1	Why is the tidal wave amplified or damped?		69
		3.1.2	Derivation of the tidal damping equation		70

		3.1.3 Application of the derived formula to observations	77		
		3.1.4 Conclusions	78		
	3.2	Tidal wave propagation	79		
		3.2.1 The relation between tidal damping and wave celerity	79		
		3.2.2 Theory of wave propagation	82		
		3.2.3 Empirical verification in the Schelde and Incomati estuaries	92		
		3.2.4 The wave celerity according to Mazure	95		
		3.2.5 Conclusion	96		
	3.3	Effect of river discharge and other higher order effects			
		on tidal damping			
		3.3.1 Which higher order effects are important	98		
		3.3.2 Incorporating river discharge into the derivation of			
		the Celerity equation	99		
		3.3.3 Incorporating river discharge into the derivation of			
		the Damping equation	100		
		3.3.4 Application to the Schelde-estuary	104		
		3.3.5 Conclusion	105		
	3.4	The influence of climate change and human interference			
		on estuaries	105		
4.0	Mix	ting in Alluvial Estuaries	109		
	4.1	Types of mixing, their relative importance, and interaction	109		
	4.2	Gravitational circulation	113		
	4.3	Mixing by the tide	115		
	4.4	Residual circulation through flood and ebb channels	116		
	4.5	The decomposition method and why it is not very useful	122		
	4.6	Longitudinal effective dispersion	126		
	4.7	Van den Burgh's equation	132		
		4.7.1 The physical meaning of Van den Burgh's K	133		
		4.7.2 Correspondence with other methods	134		
	4.8	General equation for longitudinal dispersion	135		
5.0	Salt	Intrusion in Alluvial Estuaries	137		
	5.1	Types of salt intrusion and shapes of salt intrusion curves	137		
	5.2	Salt balance equations	139		
	5.3	Influence of rainfall and evaporation	144		
	5.4	Time scales and conditions for steady state	149		
	5.5	Predictive model for steady state	153		
	0-965	5.5.1 Expressions for HWS, LWS, and TA	153		
		5.5.2 Empirical relations for the predictive model	159		
		5.5.3 The predictive model compared to other methods	169		
	5.6	Unsteady state model	171		
		5.6.1 System response time	171		

vi

Contents

	5.6.2 Unsteady state dispersion	176
	5.6.3 Application of the unsteady state model	177
5.7	Hypersaline estuaries	181
5.8	Concluding remarks	183
Reference	res	185

I	n	d	e	X

191