Piping and Pipeline Engineering
Design, Construction, Maintenance, Integrity, and Repair

George A. Antaki
Aiken, South Carolina, U.S.A.
Contents

PREFACE

<table>
<thead>
<tr>
<th>Chapter 1 Codes, Standards and Practice</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 A Brief History of Piping Technology</td>
<td>1</td>
</tr>
<tr>
<td>1.2 National Codes, Standards and Guides</td>
<td>9</td>
</tr>
<tr>
<td>1.3 Piping and Pipeline Codes</td>
<td>13</td>
</tr>
<tr>
<td>1.4 Scope of ASME B31 Codes</td>
<td>14</td>
</tr>
<tr>
<td>1.5 Boiler and Pressure Vessel Code</td>
<td>15</td>
</tr>
<tr>
<td>1.6 Federal and State Laws</td>
<td>17</td>
</tr>
<tr>
<td>1.7 ASME Council on Codes and Standards</td>
<td>21</td>
</tr>
<tr>
<td>1.8 ASME B16 Standards</td>
<td>22</td>
</tr>
<tr>
<td>1.9 API Standards and Recommended Practices</td>
<td>23</td>
</tr>
<tr>
<td>1.10 Manufacturers Standardization Society</td>
<td>26</td>
</tr>
<tr>
<td>1.11 Pipe Fabrication Institute Standards</td>
<td>29</td>
</tr>
<tr>
<td>1.12 American Institute of Steel Construction</td>
<td>30</td>
</tr>
<tr>
<td>1.13 American Concrete Institute</td>
<td>30</td>
</tr>
<tr>
<td>1.14 NACE</td>
<td>30</td>
</tr>
<tr>
<td>1.15 Material Institutes</td>
<td>31</td>
</tr>
<tr>
<td>1.16 National Board</td>
<td>32</td>
</tr>
<tr>
<td>1.17 Flow Control Institute Standard</td>
<td>32</td>
</tr>
<tr>
<td>1.18 Hydraulic Institute Pump Standards</td>
<td>33</td>
</tr>
<tr>
<td>1.19 References</td>
<td>33</td>
</tr>
</tbody>
</table>

CHAPTER 2 FUNDAMENTALS

<table>
<thead>
<tr>
<th>Chapter 2 Fundamentals</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1 Competence</td>
<td>34</td>
</tr>
<tr>
<td>2.2 At the Engineering Level</td>
<td>34</td>
</tr>
<tr>
<td>2.2.1 Materials</td>
<td>35</td>
</tr>
<tr>
<td>2.2.2 Design</td>
<td>36</td>
</tr>
<tr>
<td>2.2.2.1 System Design</td>
<td>36</td>
</tr>
<tr>
<td>2.2.2.2 Component Design</td>
<td>36</td>
</tr>
<tr>
<td>2.2.3 Construction</td>
<td>37</td>
</tr>
<tr>
<td>2.2.4 Quality Control Inspections</td>
<td>38</td>
</tr>
<tr>
<td>2.2.5 Preoperational Testing</td>
<td>38</td>
</tr>
<tr>
<td>2.2.5.1 Mechanical Testing</td>
<td>38</td>
</tr>
<tr>
<td>2.2.5.2 Operational Testing</td>
<td>38</td>
</tr>
<tr>
<td>2.2.6 Maintenance</td>
<td>39</td>
</tr>
<tr>
<td>2.2.7 Operation</td>
<td>39</td>
</tr>
<tr>
<td>2.3 At the Corporate Level</td>
<td>40</td>
</tr>
</tbody>
</table>
CHAPTER 3 MATERIALS

Introduction: A Good Pastry

3.1 Ferrous Pipe
 3.1.1 Wrought Iron
 3.1.2 Cast Iron
 3.1.3 Steel Pipe and Fittings
 3.1.3.1 Essential Characteristics
 3.1.3.2 Carbon Steels
 3.1.3.3 Alloy Steels
 3.1.3.4 High Alloy Steels
 3.1.4 Steel Line Pipe

3.2 Non-Ferrous Pipe
 3.2.1 Aluminum Alloys
 3.2.2 Nickel Alloys
 3.2.3 Copper Alloys

3.3 Fabrication of Steel Pipe
 3.3.1 Pipe Size
 3.3.2 Seamless Pipe
 3.3.3 Seam Welded Pipe
 3.3.4 Documentation
 3.3.5 Microstructure

3.4 Fabrication of Pipe Fittings and Components
 3.4.1 Forging
 3.4.2 Casting
 3.4.3 Sheet Metal
 3.4.4 Pipe Specifications
 3.4.5 Machining and Finishing
 3.4.6 Base Metal Imperfections

3.5 Mechanical Properties
 3.5.1 Strength
 3.5.2 Hardness
 3.5.3 Toughness
 3.5.3.1 Charpy V-Notch Toughness
 3.5.3.2 Drop Weight Test
 3.5.3.3 Fracture Toughness
 3.5.4 Fatigue Strength
 3.5.5 Physical Properties

3.6 Procurement
 3.6.1 Procurement Specification
 3.6.2 Supplier Assessment

3.7 References

CHAPTER 4 INTERNAL PRESSURE

4.1 Pressure Design of Piping
Contents

4.1.1 Thin Wall Approximation 81
4.1.2 Pipeline Design Equation 82
4.1.3 Yield and Wall Thickness 83
4.2 Pressure Design of Plant Piping 85
 4.2.1 Lamé’s Formula 85
 4.2.2 Early Design Equation 86
 4.2.3 Piping Design Equations 87
 4.2.4 Allowable Stress 89
 4.2.5 Wall Thickness Allowance 90
4.3 Yield and Burst Pressure 90
 4.3.1 The Von Mises Yield Pressure 90
 4.3.2 Burst Pressure 91
4.4 Pressure Design of Plastic Pipe 92
4.5 Pressure Rating 92
 4.5.1 Pressure Rating 92
 4.5.2 Malleable Iron Threaded Fittings 94
 4.5.3 Steel Butt Welded Fittings 94
 4.5.4 Steel Flange Ratings 95
 4.5.5 Socket Welding and Threaded Fittings 95
 4.5.6 Valves 96
 4.5.6.1 Shell Strength 96
 4.5.6.2 Seat Tightness 96
 4.5.7 Unlisted Components 97
4.6 Pressure Stress in Fittings 97
 4.6.1 Pipe Elbows and Bends 97
 4.6.2 Branch Connections and Nozzles 98
 4.6.3 Reinforcement of Branch Connections 101
 4.6.4 End Fillets 103
4.7 High Pressure Design 105
4.8 Design Pressure 105
 4.8.1 Design Scenarios 105
 4.8.2 Pressure Excursions 107
4.9 Over-Pressure Protection 109
4.10 Burst Energy 111
4.11 Pipe Specification 112
4.12 Valve Specification 116
4.13 References 118

CHAPTER 5 EXTERNAL PRESSURE

5.1 Buckling Pressure 121
5.2 ASME Code Design 124
5.3 References 124

CHAPTER 6 LAYOUT AND SUPPORTS

126
6.1 Spacing of Pipe Supports
6.2 Sustained Stress
6.3 Stress Indices
6.4 Design Standards
6.5 Selection of Pipe Supports
 6.5.1 Variable Spring
 6.5.2 Constant Load Hanger
 6.5.3 Rigid Frames
 6.5.4 Road Hangers
 6.5.5 Pipe Rolls
 6.5.6 Rigid Struts
 6.5.7 Vibration Dampers
 6.5.8 Snubbers
 6.5.9 Anchors
 6.5.10 Saddles
6.6 Design of Standard Support
6.7 Design of Steel Frames
 6.7.1 Design
 6.7.2 Construction
6.8 Anchorage to Concrete
6.9 Layout Rules of Good Practice
 6.9.1 Equipment Elevations
 6.9.2 Equipment Spacing
 6.9.3 Piping
 6.9.4 Valves
 6.9.5 Pump Piping
 6.9.6 Compressor Piping
6.10 References

CHAPTER 7 FLEXIBILITY AND FATIGUE
7.1 Layout for Flexibility
7.2 Simplified Flexibility Analysis
7.3 Fatigue
7.4 Smooth Specimen Fatigue
7.5 Pipe Component Fatigue
7.6 Fatigue Strength of Socket Welds
7.7 Fatigue Strength of Butt Welds
7.8 ASME B31 Fatigue Rules
7.9 Fracture Mechanics Approach
7.10 Corrosion Fatigue
7.11 Shakedown
7.12 Cold Spring
7.13 Through-Wall Temperatures
7.14 Creep Damage
Contents

7.15 Pipe Insulation
7.16 Expansion Joints
7.17 References

CHAPTER 8 VIBRATION

8.1 Root Cause
8.2 Mechanically Induced Vibration
8.3 Vibration Analysis
8.4 Hydraulic Induced Vibration
 8.4.1 Vane and Piston Motion
 8.4.2 Turbulence Induced Vibration
 8.4.3 Cavitation and Air Pockets
 8.4.4 Acoustic Resonance
 8.4.5 Breathing Mode
 8.4.6 Valve Noise
8.5 Measuring Vibration
 8.5.1 Measuring Displacement
 8.5.2 Measuring Velocity
 8.5.3 Measuring Acceleration
 8.5.4 Strain Gages
 8.5.5 Signal Conditioners and Analyzers
8.6 Assessing Vibration Severity
 8.6.1 Severity Charts
 8.6.2 Pipe Vibration Analysis
8.7 Prevention and Mitigation
 8.7.1 Eliminate the Source
 8.7.2 Good Layout and Supports
 8.7.3 Preoperational Testing
 8.7.4 Reducing Turbulence and Cavitation
 8.7.5 Pulsation Damper
 8.7.6 Damping
 8.7.7 Flexible Connections
8.8 References

CHAPTER 9 FLUID TRANSIENTS

9.1 Single Liquid Phase
 9.1.1 Bulk or Propagative Flow
 9.1.2 Pressure Change in Bulk Flow
 9.1.3 Waterhammer
 9.1.4 Valve Characteristics
 9.1.5 One-to-Two Phase Transient
 9.1.6 Pump Fill Rate
 9.1.7 Prevention of Liquid Waterhammer
9.2 Two-Phase Vapor-Liquid Waterhammer
9.2.1 Steam-Water Waterhammer
9.2.2 Case Histories
9.2.3 Predicting the Effects of Two-Phase Transients
9.2.4 Steam System Layout
9.3 Non-Condensable Two-Phase Waterhammer
 9.3.1 Flow Regime
 9.3.2 Analysis of Slug Flow
 9.3.3 Trapped Air
9.4 Stress Analysis
9.5 References

CHAPTER 10 WIND DESIGN
10.1 Wind Damage
10.2 Wind Pressure
10.3 Vortex Shedding
10.4 Wind-Borne Missiles
10.5 References

CHAPTER 11 SEISMIC DESIGN AND RETROFIT
11.1 The Seismic Challenge
11.2 Seismic Specification
 11.2.1 Project Specification
 11.2.2 Seismic Input
 11.2.3 Seismic Qualification
 11.2.3.1 Operability
 11.2.3.2 Leak Tightness
 11.2.3.3 Position Retention
 11.2.4 Material Condition
 11.2.5 Interactions
 11.2.6 Documentation
 11.2.7 Maintenance
 11.2.8 Definition of Common Terms
11.3 Rules of Good Practice
11.4 Seismic Analysis Techniques
11.5 Seismic Input Based on IBC
11.6 Seismic Response Spectra
 11.6.1 Seismic Input
 11.6.2 Modal and Directional Combinations
11.7 Seismic Qualification
11.8 Shake Table Testing
11.9 Seismic Interactions
 11.9.1 Description
 11.9.2 Interaction Review
 11.9.3 Falling Interactions
Contents

11.9.4 Rocking or Swing Impact 267
11.9.5 Significant Impact 268
11.10 References 268

CHAPTER 12 EXPLOSIONS
12.1 Deflagration and Detonation 271
12.2 Dynamic Loads 272
12.3 Dynamic Properties 274
12.4 Pressure Limits 276
12.5 Design Criteria 276
 12.5.1 Quasi-Static Load 276
 12.5.2 Impulsive Load 278
 12.5.3 Fracture 278
12.6 Explosion Protection 280
12.7 External Explosions 281
12.8 References 284

CHAPTER 13 SUBSEA PIPELINES
13.1 Subsea Pipeline Safety 287
13.2 Design Process 288
13.3 Internal Pressure 289
13.4 External Pressure 289
13.5 Pipe Lowering 292
13.6 On-Bottom Stability 294
 13.6.1 Objective 294
 13.6.2 Static Analysis 295
13.7 Pipeline Flotation 297
13.8 Fatigue Design 298
13.9 Hook and Pull 298
13.10 References 299

CHAPTER 14 BURIED PIPE
14.1 To Bury or not to Bury 302
14.2 Internal Pressure 303
14.3 Soil Loads 303
14.4 Surface Loads 304
14.5 Thermal Expansion and Contraction 305
14.6 Ground Movement 307
14.7 Seismic 309
14.8 References 309

CHAPTER 15 WELDING
15.1 Shop and Field Welding 311
15.2 Welding Processes 313
Contents

16.13.2 Smart Pigs 343
16.14 References 344

CHAPTER 17 PIPE FLANGE 349
17.1 Flange Standards 349
17.2 Flange Types 349
17.3 Flange Gaskets
 - 17.3.1 Selection Factors 351
 - 17.3.2 Non-Metallic Gaskets 352
 - 17.3.3 Semi-Metallic Gaskets 353
 - 17.3.4 Metallic Gaskets 353
17.4 Flange Faces 354
17.5 Flange Ratings 355
17.6 Flange Bolt Torque 357
17.7 External Loads 362
17.8 Assembly of Pipe Flanges
 - 17.8.1 Assembly Steps 364
 - 17.8.2 Closing the Gap 367
17.9 Nuts and Bolts
 - 17.9.1 Definitions 368
 - 17.9.2 Bolt Fabrication 368
 - 17.9.3 Bolt Specifications 368
 - 17.9.4 Nut, Washer Specifications 371
 - 17.9.5 Restrictions 371
 - 17.9.6 Corrosion Prevention 372
17.10 Maintenance
 - 17.10.1 Flange Assembly Sequence 372
 - 17.10.2 Replacing a Gasket 373
 - 17.10.3 Welding a Slip-On Flange 373
 - 17.10.4 Leakage Diagnostics 374
 - 17.10.5 Refinishing Flange Faces 374
17.11 References 374

CHAPTER 18 MECHANICAL JOINTS 377
18.1 What they Are 377
18.2 Swage Fittings 379
18.3 Grooved Fittings 380
18.4 In Conclusion 381

CHAPTER 19 LEAK AND PRESSURE TEST 382
19.1 Leak Test and Pressure Test 382
19.2 Leak and Pressure Test Methods 383
19.3 Choice of Test Method 388
19.4 Conduct of Test 389
Contents

21.4 Mechanical Damage 439
21.4.1 Ripple 439
21.4.2 Buckle and Wrinkle 440
21.4.3 Dent 441
21.4.4 Dent with Gouge 442
21.5 References 443

Chapter 22 Maintenance, Reliability and Failure Analysis 446

22.1 Case History 446
22.2 Maintenance Objective 448
22.3 Maintenance Plan 448
22.4 Maintenance Strategies 449
22.5 Corrective Maintenance 450
22.6 Failure Modes 451
22.7 Pro-Active Maintenance 453
22.7.1 Preventive or Predictive Maintenance 453
22.7.2 Inspection Checklists 454
22.7.2.1 Piping and Vessels 454
22.7.2.2 Supports 455
22.8 PDM Techniques 456
22.9 Reliability 459
22.10 Maintenance and the Construction Codes 462
22.11 Elements of Failure Analysis 463
22.11.1 Data Collection 463
22.11.2 Visual Examination, Macrofractography and NDE 463
22.11.3 Metallography and Microfractography 465
22.11.4 Chemical Analysis 467
22.11.5 Mechanical Tests 467
22.11.6 Stress and Fracture Analysis 467
22.11.7 Improvements 468
22.12 References 468

Chapter 23 Repair Techniques 471

23.1 Repair Strategy 471
23.2 Replacement 471
23.3 Grinding Out Defects 475
23.4 Weld Overlay 477
23.5 Full Encirclement Sleeve 478
23.6 Fillet Welded Patch 480
23.7 Flush Welded Patch 480
23.8 Welded Leak Box 481
23.9 Mechanical Clamp 482
23.10 Composite Overwrap 483
23.11 Buried Pipe Rehabilitation 484