THE ART OF TUNNELLING

by

KÁROLY SZECHY

Member of the Hungarian Academy of Sciences
Professor of Foundation Engineering and Tunnelling
at the
Technical University for Civil and Communication Engineering
Budapest
CONTENTS

CHAPTER 1

INTRODUCTION .. 19

1.1. Purposes and classification of tunnels 21

1.11. Traffic tunnels .. 22

1.11. Classification by position or alignment 22

1.12. Classification according to purpose 26

1.12. Transportation tunnels ... 30

1.12.1. Hydroelectric plant tunnels 30

1.12.2. Water supply tunnels .. 31

1.12.3. Public utility tunnels .. 32

1.12.4. Sewer tunnels .. 32

1.12.5. Other tunnels .. 33

1.13. Storage tunnels (garages, parking areas, shelters and storehouses) 33

1.2. A brief history of tunnel construction 36

CHAPTER 2

PRELIMINARY STUDIES AND GENERAL DESIGN CONSIDERATIONS ... 47

2.1. Preliminary studies .. 47

2.11. Economic analysis ... 47

2.12. Geological survey and exploration 52

2.12.1. General geological survey 55

2.12.2. Detailed geological site investigations prior to planning 60

2.12.3. Site exploration during design 62

2.12.4. In situ exploration during construction 63

2.13. Typical geological factors and their effect on tunnelling 64

2.13.1. The situation and orientation of layers to be penetrated 64

2.13.2. Condition of strata to be perforated 68

2.13.3. Stress, strength and deformation properties of rocks 70

2.13.4. Hydrological survey ... 79

2.13.5. Gases and rock temperatures 84

2.14. Geological profile along the tunnel axis 94
CONTENTS

2.2. Factors influencing the location of the tunnel ... 106
 2.21. Selection of the line ... 106
 2.22. Selection of the longitudinal elevation and gradients 110
 2.23. Determination of the cross-section .. 117
 22.31. Tunnel clearance ... 123
 22.32. Influence of geological environment on shape of cross-section 124
 22.33. Influence of construction method on shape of cross-section 128
 22.34. Influence of tunnel lining on shape of cross-section 128
 22.35. Size of the tunnel cross-section .. 129
 References .. 132

CHAPTER 3

ANALYSIS OF LOADS ON TUNNELS AND UNDERGROUND STRUCTURES 133

3.1. Causes and types of rock pressure ... 133
 3.11. Rock pressure due to loosening .. 136
 3.12. Genuine mountain pressure ... 148
 3.13. Swelling pressure .. 156
 3.14. Factors affecting the magnitude and local types of rock pressure 157

3.2. Determination of vertical rock pressures. Rock pressure theories 159
 3.21. Estimates and approximate methods based on the extent of upbreak 159
 3.22. Theories based on theoretical stress conditions in the rock mass 166
 32.21. Theory of elasticity and estimation of stresses 167
 32.22. Results of investigations by Fenner ... 171
 32.23. Stress conditions around circular and elliptical cavities 183
 3.23. Theories based on various displacement and equilibrium assumptions 191
 32.31. Theories taking into account the effect of depth 191
 32.32. Theories neglecting the effect of depth .. 208

3.3. Determination of lateral pressures on tunnels .. 219
 3.31. Approximate determination of lateral pressures 219
 3.32. Exact determination of lateral pressures ... 221
 3.33. Experimental determination and in situ measurement of lateral pressures 221

3.4. Bottom pressures ... 223
 3.41. Determination of bottom pressure according to Tsimbaryevitch 225
 3.42. Determination of bottom pressure according to Terzaghi 227

3.5. Development and superposition of rock pressures 230
 3.51. Development of rock pressure during excavation 230
 3.52. Superposition and interaction of roof loads above adjacent tunnels 234
 3.53. Loads on rock-pillars .. 238
 35.31. Protodyakonov's theory .. 239
 35.32. Tsimbaryevitch's theory .. 240
CONTENTS

3.6. Critical treatment of rock pressure theories and in situ rock pressure measurements 241
 3.61. Measurements on the rock face 243
 3.62. Measurements in the interior of the rock 245
 3.63. Measurements on tunnel supports 246
 3.64. Measurement of pressure changes in completed linings 248
 3.65. Determination of pressures by model tests 255
 3.66. Main types of pressure measuring instruments 256

3.7. Water pressure .. 259

3.8. Live loads .. 262
 3.81. Internal loads .. 262
 3.82. Surface loads .. 263

References .. 263

CHAPTER 4

DESIGN OF TUNNEL SECTIONS ... 264

4.1. Design loads .. 267
 4.11. Estimated design loads for deep tunnels in solid ground 267
 4.12. Estimated design loads for shallow tunnels in loose, saturated soil .269
 4.13. Excerpts from the specifications for the design loads of the Lisbon subway ... 270
 4.14. Excerpts from the specifications for the design loads of the Budapest subway 272
 4.15. Soviet standard specifications for the design of underground and motorway tunnels 277

4.2. Design of horseshoe-shaped tunnels 281
 4.21. Design by members ... 281
 42.11. Graphic investigation (Kommerell) 282
 42.12. Analytical design by members 291
 42.13. Common deformations and composite action of the surrounding ground (Davidov’s method) .. 316
 4.22. Analytical design method treating the section as a whole and considering composite action of the ground 321
 42.21. Method of Zurabov and Bougayeva 321
 42.22. Numerical example of the Zurabov—Bougayeva method ... 326

4.3. Design of circular tunnel sections 341
 4.31. Graphical investigation .. 341
 4.32. Approximate method for the calculation of ring sections 342
 43.21. Design by dividing the section into segments 342
 43.22. Design of a monolithic ring section 343
 43.23. The Hewett—Johannesson method 356
 4.33. The design of circular tunnels as sections elastically embedded in the subsoil 365
 43.31. The method of Bodrov—Gorelik 365
 43.32. The polygonal method .. 378
 43.33. Bougayeva’s method ... 396
 43.34. Davidov’s method ... 405
CONTENTS

43.35. Varga’s development .. 408
43.36. Meissner’s and Orlov’s methods 410

4.34. Design of tunnels with double lining 412
43.41. Soviet specifications (based on Galerkin’s theory) 412
43.42. Design with steel plate lining (design after Mühlofer) 415
43.43. Design of tunnels with laminated linings 418
43.44. Design of laminated linings for non-radial (external) loads 420

4.4. Design of culverts and conduits 423

4.41. Design of circular culverts ... 424
44.11. Determination of vertical earth pressure (according to Yaroshenko) 424
44.12. Determination of traffic loads 433
44.13. Effect of the bedding ... 434
44.14. Cross-sectional design of culvert sections 435
44.15. Longitudinal design of culverts 438

4.42. Design of circular conduits ... 442
4.43. The semi-graphical design of egg-shaped culverts 444
4.44. Flexible metal culverts of corrugated steel sheets 454

4.5. Design of rectangular tunnel sections 459
45.51. One bay rectangular section on rigid foundations 459
45.52. Two bay box section on elastic foundations 462

4.6. Design directives for ancillary works, services and installations 480
4.61. Composition and structure of tunnel walls 480
4.62. Waterproofing of tunnels .. 481
46.21. Multi-layer plastering and shotcrete 483
46.22. Gunite plaster .. 485
46.23. Bonded waterproofing .. 486
46.24. Reinforced bituminous waterproofing 487
46.25. PVC waterproofing .. 487
46.26. Use of thermoplastic sheets 489

4.63. Drainage of tunnels .. 490
4.64. Protection against corrosion .. 493
46.41. Problems of corrosion by soil 493
46.42. Groundwater corrosion ... 498

4.65. Tunnel ventilation .. 498
46.51. Ventilation during construction 499
46.52. Natural ventilation .. 503
46.53. Mechanical ventilation .. 505

4.66. Lighting, and noise control in tunnels 519
46.61. Lighting .. 519
46.62. Noise control ... 520

4.67. Ancillary works ... 520
46.71. Safety recesses .. 521
46.72. Portals ... 521

References ... 523
CHAPTER 5

TUNNEL SURVEYING

5.1. Surveying from portals

5.11. Horizontal layout

5.11.1. Layout of short tunnels
5.11.2. Layout of long tunnels

5.12. Marking the stations

5.13. Layout of details

5.14. Methods to improve accuracy

5.15. Vertical layout

5.2. Layout of tunnels starting underground

5.21. Horizontal layout

5.21.1. Surface reference net
5.21.2. Transfer of directions down shafts
5.21.3. Underground directional layout
5.21.4. Possibilities for increasing the accuracy of the layout

5.22. Vertical layout

5.23. Layout of ring sections (segments) and shields

5.23.1. Layout of segments
5.23.2. Determining the position of the shield

References

CHAPTER 6

CONSTRUCTION AND DESIGN OF TUNNELS

6.1. Tunnelling in solid rocks

6.11. Means of excavation in solid rocks

6.11.1. Mechanical drilling and cutting
6.11.2. The use of explosives and blasting technique

6.12. Full-face tunnelling without supports

6.13. Full-face tunnelling with supports

6.13.1. Temporary support independent of the permanent lining

6.2. Tunnelling in moderately firm rocks and ground

6.21. Tunnelling by successive excavation and lining of smaller independent headings (classical or mining methods)

6.21.1. Scope and construction of headings
6.21.2. Vertical break-ups and pits

6.22. Single-stage mining methods of tunnel construction

6.22.1. The crown bar (English) method
6.22.2. The cross-bar (Austrian) method
62.23. The alternate ring method ... 638
62.24. The centre-cut method .. 638

6.23. Multiple-stage classical methods .. 639
6.23.1. The Belgian or underpinning (flying arch) method 639
6.23.2. The core-leaving or German method .. 648
6.23.3. The Italian or invert method ... 652
6.23.4. Combined tunnelling methods .. 654

6.24. Recent tunnelling methods employing both timber and steel-supporting elements 656
6.24.1. Tunnelling with liner plates (the needle beam method) 657
6.24.2. The full-face erector method .. 658
6.24.3. Tunnelling with liner plates and stiffening rings 658
6.24.4. The Kunz method ... 664
6.24.5. The Cologne method ... 665

6.3. Tunnelling in loose ground and under watercourses 668
6.31. Tunnelling by sinking caissons .. 673
6.31.1. Sinking caissons in the form of working chambers 673
6.31.2. The floating caisson method ... 675

6.32. Shield tunnelling .. 678
6.32.1. Structure and dimensions of tunnel shields .. 681
6.32.2. The main working procedures of shield tunnelling 699
6.32.3. Lining segments for shield-driven tunnels ... 738
6.32.4. Application of compressed air (the plenum process) and soil stabilization in tunnelling ... 771

6.33. Special underground structures and railway stations 783
6.33.1. Access or ventilation shafts ... 784
6.33.2. Connecting drifts (ventilation ducts) .. 795
6.33.3. Underground halls (shield chambers, power and substation rooms, etc.) 797
6.33.4. Underground stations and adjoining service and communication localities ... 799

6.4. Urban and public utility tunnels constructed at a shallow depth 811
6.41. Side-wall construction in wall drifts ... 812
6.42. Special methods for the construction of pedestrian subways, highway and public service line underpasses ... 812
6.42.1. Subways in Vienna ... 814
6.42.2. Margaret bridge in Budapest .. 817
6.42.3. Dimitrov Square subway in Budapest ... 818

6.43. Construction of culverts and sewers by pipe jacking 819
6.44. Cut and cover construction method with precast panels 824

6.5. Safety measures and health protection in tunnelling 828
6.51. Safety measures ... 828
6.52. Health protection .. 829
6.52.1. Silicosis ... 830
6.52.2. Caisson disease ... 831

References .. 333
CHAPTER 7

SERVICE, OPERATION AND MAINTENANCE OF TUNNELS . 835

7.1. Organization and responsibilities of maintenance and service departments . . . 835

7.11. Inspection of the shape of the tunnel . .. 835
7.12. Inspection of the track drainage and insulation 838

7.12.1. Inspection of the tracks ... 838
7.12.2. Inspection in the Budapest Subway .. 839

7.13. Inspection and maintenance of lining and tracks 840
7.14. Organization of maintenance services ... 842
7.15. Storage of maintenance equipment .. 843

7.2. Deterioration and repair of tunnels ... 843

7.21. Causes of deterioration of tunnels .. 844

7.21.1. Deterioration due to defective materials and workmanship 844
7.21.2. Deterioration caused by water .. 844
7.21.3. Damage caused by smoke ... 846
7.21.4. Damage due to atmospheric conditions 846
7.21.5. Impact damage ... 846
7.21.6. Damage caused by overburden .. 847
7.21.7. Deterioration in pressure tunnels .. 847
7.21.8. Damage to railway tracks ... 848
7.21.9. Maintenance of cables ... 848

7.22. Repair and reconstruction of tunnels .. 848

7.22.1. Repairs to the drainage system .. 849
7.22.2. Repair of linings .. 857

7.23. Remodelling and reconstruction of tunnels 861

7.23.1. Reconstruction for operational demands 861
7.23.2. Reconstruction because of decay and external effects 862
7.23.3. Examples of tunnel remodelling ... 864

7.3. Surface subsidences resulting from tunnel construction 869

7.31. Estimation of surface subsidences .. 869

7.31.1. Estimating surface subsidence on a theoretical basis 870
7.31.2. Estimating subsidence from actual observations 877

7.32. Measuring the subsidence of buildings due to subway construction 879

References ... 882

General literature .. 883

Index ... 885