# CONSTRUCTION DEWATERING

# New Methods and Applications

SECOND EDITION

J. PATRICK POWERS, P.E.

Mueser Rutledge Consulting Engineers





JOHN WILEY & SONS, INC.

## CONTENTS

### PART ONE—THEORY

| 1. | Grou  | ndwater in Construction                     | 1  |
|----|-------|---------------------------------------------|----|
|    | 1.1   | Groundwater in the Hydrologic Cycle         | 1  |
|    | 1.2   | Origins of Dewatering                       | 6  |
|    | 1.3   | Development of Modern Dewatering Technology | 7  |
| 2. | The G | Seology of Soils                            | 12 |
|    | 2.1   | Formation of Soils                          | 13 |
|    | 2.2   | Mineral Composition of Soils                | 14 |
|    | 2.3   | Rivers                                      | 14 |
|    | 2.4   | Lakes                                       | 17 |
|    | 2.5   | Estuaries                                   | 17 |
|    | 2.6   | Beaches                                     | 18 |
|    | 2.7   | Wind Deposits                               | 18 |
|    | 2.8   | Glaciers—The Pleistocene Epoch              | 19 |
|    | 2.9   | Rock                                        | 22 |
|    | 2.10  | Limestone and Coral                         | 24 |
|    | 2.11  | Tectonic Movements                          | 27 |
|    | 2.12  | Man-Made Ground                             | 28 |
| 3. | Soils | and Water                                   | 29 |
|    | 3.1   | Soil Structure                              | 30 |
|    | 3.2   | Gradation of Soils                          | 30 |
|    |       |                                             |    |

XV

|    | 3.3   | Porosity and Void Ratio: Water Content              | 35  |
|----|-------|-----------------------------------------------------|-----|
|    | 3.4   | Relative Density, Specific Gravity, and Unit Weight | 36  |
|    | 3.5   | Permeability                                        | 38  |
|    | 3.6   | Silts and Clays                                     | 46  |
|    | 3.7   | Unified Soil Classification System (ASTM D-2487)    | 48  |
|    | 3.8   | Soil Descriptions                                   | 52  |
|    | 3.9   | Visual and Manual Classification of Soils           | 53  |
|    | 3.10  | Seepage Forces and Soil Stress                      | 57  |
|    | 3.11  | Gravity Drainage of Granular Soils                  | 60  |
|    | 3.12  | Drainage of Silts and Clays: Unsaturated Flow       | 62  |
|    | 3.13  | Settlement Caused by Dewatering                     | 65  |
|    |       | Preconsolidation                                    | 70  |
|    | 3.15  | Other Side Effects of Dewatering                    | 7'  |
| 4. | Hydr  | ology of the Ideal Aquifer                          | 72  |
|    | 4.1   | Definition of the Ideal Aquifer                     | 73  |
|    | 4.2   | Transmissibility T                                  | 73  |
|    | 4.3   | Storage Coefficient Cs                              | 75  |
|    | 4.4   | Pumping from a Confined Aquifer                     | 76  |
|    | 4.5   | Recovery Calculations                               | 79  |
|    | 4.6   | Definition of the Ideal Water Table Aquifer         | 81  |
|    | 4.7   | Specific Capacity                                   | 82  |
| 5. | Char  | acteristics of Natural Aquifers                     | 87  |
|    | 5.1   | Anisotropy: Stratified Soils                        | 87  |
|    | 5.2   | Horizontal Variability                              | 9   |
|    | 5.3   | Recharge Boundaries: Radius of Influence Ro         | 9   |
|    | 5.4   | Barrier Boundaries                                  | 93  |
| 6. | Hydro | ological Analysis of Dewatering Systems             | 94  |
|    | 6.1   | Radial Flow to a Well in a Confined Aquifer         | 97  |
|    | 6.2   | Radial Flow to a Well in a Water Table Aquifer      | 99  |
|    | 6.3   | Radial Flow to a Well in a Mixed Aquifer            | 100 |
|    | 6.4   | Flow to a Drainage Trench from a Line Source        | 101 |
|    | 6.5   | The System as a Well: Equivalent Radius $r_s$       | 102 |
|    | 6.6   | Radius of Influence $R_0$                           | 103 |
|    | 6.7   | Permeability $K$ and Transmissibility $T$           | 105 |
|    | 6.8   | Initial Head H and Final Head h                     | 105 |

|    | 6.9   | Partial Penetration                             | 106 |
|----|-------|-------------------------------------------------|-----|
|    | 6.10  | Storage Depletion                               | 107 |
|    | 6.11  | Specific Capacity of the Aquifer                | 111 |
|    | 6.12  | Cumulative Drawdown or Superposition            | 112 |
|    | 6.13  | Capacity of the Well Qw                         | 114 |
|    | 6.14  | Flow Net Analysis: Fragment Analysis            | 118 |
|    | 6.15  | Concentric Dewatering Systems                   | 120 |
|    | 6.16  | Vertical Flow                                   | 122 |
| 7. | Grou  | ndwater Modeling                                | 125 |
|    | 7.1   | Analytic versus Numerical Solutions             | 126 |
|    | 7.2   | Defining the Problem to be Modeled              | 128 |
|    | 7.3   | Selecting the Program                           | 129 |
|    | 7.4   | Selecting the Hardware                          | 130 |
|    | 7.5   | Verification                                    | 130 |
|    | 7.6   | Calibration                                     | 131 |
|    | 7.7   | 2D Models: Well System in a Water Table Aquifer | 131 |
|    | 7.8   | Calibrating the Model of Fig. 7.5               | 134 |
|    | 7.9   | 3D Models: Partial Penetration                  | 137 |
|    | 7.10  | 3D Models: Vertical Flow                        | 139 |
| 8. | Piezo | ometers                                         | 142 |
|    | 8.1   | Soil Conditions                                 | 142 |
|    | 8.2   | Ordinary Piezometers and True Piezometers       | 143 |
|    | 8.3   | Piezometer Construction                         | 145 |
|    | 8.4   | Proving Piezometers                             | 147 |
|    | 8.5   | Reading Piezometers                             | 148 |
|    | - 8.6 | Data Loggers                                    | 149 |
|    | 8.7   | Pore Pressure Piezometers                       | 151 |
| 9. | Pump  | ping Tests                                      | 153 |
|    | 9.1   | Planning the Test                               | 154 |
|    | 9.2   | Design of the Pumping Well                      | 154 |
|    | 9.3   | Plezometer Array                                | 156 |
|    | 9.4   | Duration of Pumpdown and Recovery               | 156 |
|    | 9.5   | Pumping Rate                                    | 158 |
|    | 9.6   | Nature and Frequency of Observations            | 159 |
|    | 9.7   | Analysis of Pump Test Data                      | 159 |

#### xviii / CONTENTS

|     | 9.8   | Tidal Corrections                                       | 165 |
|-----|-------|---------------------------------------------------------|-----|
|     | 9.9   | Well Loss                                               | 169 |
|     | 9.10  | Step Drawdown Tests                                     | 172 |
|     | 9.11  | Testing Low Yield Wells                                 | 174 |
|     | 9.12  | Delayed Storage Release: Boulton Analysis               | 175 |
| 10. | Surfa | ce Hydrology                                            | 177 |
|     | 10.1  | Lakes and Reservoirs                                    | 178 |
|     | 10.2  | Bays and Ocean Beaches                                  | 178 |
|     | 10.3  | Rivers                                                  | 178 |
|     | 10.4  | Precipitation                                           | 184 |
|     | 10.5  | Disposal of Dewatering Discharge                        | 186 |
|     | 10.6  | Water from Existing Structures                          | 187 |
| 11. | Geot  | echnical Investigation of Dewatering Problems           | 189 |
|     | 11.1  | Preliminary Studies                                     | 190 |
|     | 11.2  | Borings                                                 | 191 |
|     | 11.3  | Piezometers and Observation Wells                       | 193 |
|     | 11.4  | Borehole Testing: Slug Tests                            | 194 |
|     | 11.5  | Laboratory Analysis of Samples                          | 196 |
|     | 11.6  | Geophysical Methods                                     | 196 |
|     | 11.7  | Permanent Effects of Structures on the Groundwater Body | 197 |
|     | 11.8  | Investigation of Potential Side Effects of Dewatering   | 199 |
|     | 11.9  | Pumping Tests                                           | 201 |
|     | 11.10 | Presentation in the Bidding Documents                   | 202 |
| 12. | Pump  | Theory                                                  | 203 |
|     | 12.1  | Types of Pumps Used in Dewatering                       | 204 |
|     |       | Total Dynamic Head                                      | 209 |
|     | 12.3  | Pump Performance Curves                                 | 211 |
|     | 12.4  | Affinity Laws                                           | 212 |
|     | 12.5  | Cavitation and NPSH                                     | 215 |
|     | 12.6  | Engine Power                                            | 216 |
|     | 12.7  | Electric Power                                          | 217 |
|     | 12.8  | Vacuum Pumps                                            | 218 |
|     | 12.9  | Air Lift Pumping                                        | 220 |
|     | 12.10 | Testing of Pumps                                        | 222 |

| 13. | Grou  | ndwater Chemistry and Bacteriology      | 223        |
|-----|-------|-----------------------------------------|------------|
|     | 13.1  | Carbon Dioxide                          | 224        |
|     | 13.2  | Hydrogen Sulfide                        | 224        |
|     | 13.3  | Chlorides                               | 224        |
|     | 13.4  | Miscellaneous Salts                     | 225        |
|     | 13.5  | Iron and Manganese                      | 225        |
|     | 13.6  | Carbonates and Bicarbonates: Hardness   | 226        |
|     | 13.7  | Dissolved Oxygen                        | 227        |
|     | 13.8  | Algae                                   | 227        |
|     | 13.9  | Designing for Corrosive Waters          | 227        |
|     | 13.10 | Designing for Encrustation              | 229        |
|     | 13.11 | Acidization                             | 229        |
|     | 13.12 | Chemical Analysis                       | 233        |
| 14. | Cont  | aminated Groundwater                    | 235        |
|     | 14.1  | Contaminants Frequently Encountered     | 236        |
|     | 14.2  | Design Options at a Contaminated Site   | 236        |
|     | 14.3  | Dewater and Treat                       | 237        |
|     | 14.4  | Estimating Water Quantity to Be Treated | 238        |
|     | 14.5  | Recovery of Contaminated Water          | 238        |
|     | 14.6  | Dynamic Barriers                        | 239        |
|     | 14.7  | Reinjection                             | 241        |
|     | 14.8  | Safety                                  | 241        |
|     | 14.9  | Regulating Authorities                  | 241        |
| 15. | Pipin | ig Systems                              | 242        |
|     | 15.1  | Dewatering Pipe and Fittings            | 242        |
|     | 15.2  | Losses in Discharge Piping              | 245        |
|     | 15.3  | Losses in Wellpoint Header Lines        | 249        |
|     | 15.4  | Losses in Ejector Headers               | 251        |
|     | 15.5  | Water Hammer                            | 251        |
| PAR | t two | PRACTICE                                |            |
| 16. | Chor  | osing a Dewatering Method               | 253        |
|     |       |                                         | E10.07(0T) |
|     | 16.1  | Open Pumping versus Predrainage         | 254        |
|     | 16.2  | Methods of Predrainage                  | 254        |

#### XX / CONTENTS

|     | 16.3  | Methods of Cutoff and Exclusion                               | 262 |
|-----|-------|---------------------------------------------------------------|-----|
|     | 16.4  | Methods in Combination                                        | 263 |
|     | 16.5  | Summary                                                       | 265 |
| 17. | Sump  | os, Drains, and Open Pumping                                  | 266 |
|     | 17.1  | Soil and Water Conditions                                     | 266 |
|     | 17.2  | Boils and Blows                                               | 268 |
|     | 17.3  | Construction of Sumps                                         | 268 |
|     | 17.4  | Ditches and Drains                                            | 270 |
|     | 17.5  | Gravel Bedding                                                | 272 |
|     | 17.6  | Slope Stabilization with Sandbags, Gravel, and<br>Geotextiles | 272 |
|     | 17.7  | Use of Geotextiles                                            | 274 |
|     | 17.8  | Soldier Piles and Lagging: Standup Time                       | 274 |
|     | 17.9  | Long-Term Effect of Buried Drains                             | 278 |
| 18. | Pump  | ped Well Systems                                              | 279 |
|     | 18.1  | Testing during Well Construction                              | 279 |
|     | 18.2  | Well Construction Methods                                     | 280 |
|     | 18.3  | Wellscreen and Casing                                         | 288 |
|     | 18.4  | Filter Packs                                                  | 295 |
|     | 18.5  | Development of Wells                                          | 303 |
|     | 18.6  | Well Construction Details                                     | 305 |
|     | 18.7  | Pressure Relief Wells: Vacuum Wells                           | 308 |
|     | 18.8  | Wells That Pump Sand                                          | 309 |
|     | 18.9  | Systems of Low-Capacity Wells                                 | 311 |
| 19. | Wellp | point Systems                                                 | 312 |
|     | 19.1  | Suction Lifts                                                 | 313 |
|     | 19.2  | Single and Multistage Systems                                 | 315 |
|     | 19.3  | Wellpoint Design                                              | 317 |
|     | 19.4  | Wellpoint Spacing                                             | 319 |
|     | 19.5  | Wellpoint Depth                                               | 32  |
|     | 19.6  | Installation of Wellpoints                                    | 32  |
|     | 19.7  | Filter Sands                                                  | 324 |
|     | 19.8  | Wellpoint Pumps, Header and Discharge Piping                  | 325 |
|     | 19.9  | Tuning Wellpoint Systems                                      | 328 |
|     | 19.10 | Air/Water Separation                                          | 330 |
|     | 19.11 | Automatic Mops                                                | 33  |

| O ON ITENITO | 92 |     |
|--------------|----|-----|
| CONTENTS     | 1  | XXI |

|     |        | Vertical Wellpoint Pumps                              |            | 331 |
|-----|--------|-------------------------------------------------------|------------|-----|
|     | 19.13  | Wellpoints for Stabilization of Fine-Grained Soils    |            | 336 |
| 20. | Eject  | or Systems                                            | 3          | 338 |
|     | 20.1   | Two Pipe and Single Pipe Ejectors                     |            | 338 |
|     | 20.2   | Ejector Pumping Stations                              |            | 341 |
|     | 20.3   | Ejector Efficiency                                    |            | 343 |
|     | 20.4   | Design of Nozzles and Venturis                        | ;          | 344 |
|     | 20.5   | Ejector Risers and Swings                             | (          | 348 |
|     | 20.6   | Ejector Headers                                       | ;          | 349 |
|     | 20.7   | Ejector Installation                                  |            | 349 |
|     | 20.8   | Ejectors and Groundwater Quality                      |            | 349 |
|     | 20.9   | Ejectors and Soil Stabilization                       | ,          | 350 |
| 21. | Meth   | ods of Cutoff and Exclusion: Tunnels                  |            | 351 |
|     | 21.1   | Steel Sheet Piling                                    |            | 351 |
|     | 21.2   | Slurry Diaphragm Walls                                | 3          | 358 |
|     | 21.3   | Secant Piles                                          |            | 361 |
|     | 21.4   | Slurry Trenches                                       |            | 361 |
|     | 21.5   | Tremie Seals                                          |            | 365 |
|     | 21.6   | Grouting                                              | 2.0<br>2.0 | 366 |
|     | 21.7   | Tunnel Dewatering: Compressed Air                     | ;          | 369 |
|     | 21.8   | Tunnels: Earth Pressure Shields                       | 3          | 373 |
| 22. | Grou   | nd Freezing (With Derek Maishman)                     | 3          | 374 |
|     | 22.1   | General Principles                                    | ,          | 375 |
|     | 22.2   | Freezing Equipment and Methods                        |            | 376 |
|     | 22.3   | Freezing Applications                                 | ,          | 378 |
|     | 22.4   | Effect of Groundwater Movement                        |            | 382 |
|     | 22.5   | Frost Heave                                           | 8          | 383 |
|     | 22.6   | Case Histories                                        | ,          | 385 |
| 23. | Artifi | cial Recharge                                         |            | 388 |
|     | 23.1   | Recharge Applications                                 |            | 389 |
|     | 23.2   | Quantifying the Desired Result: Supplemental Measures |            | 389 |
|     | 23.3   | Hydrogeologic Analysis of Recharge Systems            |            | 390 |
|     | 23.4   | Recharge Trenches                                     |            | 390 |
|     | 23.5   | Recharge Wells                                        |            | 392 |
|     | 2010   | Modrial go Trollo                                     | 88         | 0,2 |

#### XXII / CONTENTS

|     | 23.6  | Recharge Wellpoint Systems             | 394 |
|-----|-------|----------------------------------------|-----|
|     | 23.7  | Problems with Recharge Water           | 394 |
|     | 23.8  | Sources of Recharge Water              | 394 |
|     | 23.9  | Permits for Recharge Operations        | 395 |
|     | 23.10 | Treatment of Recharge Water            | 395 |
|     | 23.11 | Recharge Piping Systems                | 396 |
|     | 23.12 | Operation of Recharge Systems          | 398 |
| 24. | Elect | rical Design for Dewatering Systems    | 399 |
|     | 24.1  | Electrical Motors                      | 399 |
|     | 24.2  | Motor Controls                         | 409 |
|     | 24.3  | Power Factor                           | 415 |
|     | 24.4  | Electric Generators                    | 410 |
|     | 24.5  | Switchgear and Distribution Systems    | 419 |
|     | 24.6  | Grounding of Electrical Circuits       | 423 |
|     | 24.7  | Cost of Electrical Energy              | 424 |
| 25. | Long  | -Term Dewatering Systems               | 426 |
|     | 25.1  | Types of Long-Term Systems             | 426 |
|     | 25.2  | Pumps                                  | 427 |
|     | 25.3  | Wellscreens and Wellpoint Screens      | 428 |
|     | 25.4  | Pipe and Fittings                      | 428 |
|     | 25.5  | Groundwater Chemistry and Bacteriology | 429 |
|     | 25.6  | Access for Maintenance                 | 429 |
|     | 25.7  | Instrumentation and Controls           | 43  |
| 26. | Dew   | atering Costs                          | 433 |
|     | 26.1  | Format of the Estimate                 | 434 |
|     | 26.2  | Basic Cost Data                        | 435 |
|     | 26.3  | Mobilization                           | 436 |
|     | 26.4  | Installation and Removal               | 437 |
|     | 26.5  | Operation and Maintenance              | 437 |
|     | 26.6  | Summary                                | 438 |
| 27. | Dew   | atering Specifications: Disputes       | 44  |
|     | 27.1  | Specified Results                      | 442 |
|     | 27.2  |                                        | 444 |
|     | 273   | Specified Minimum Systems              | 44  |

| 27.4                      | Dewatering Submittals                           | 445 |
|---------------------------|-------------------------------------------------|-----|
| 27.5                      | Third Party Damage Caused by Dewatering         | 446 |
| 27.6                      | Changed Conditions Clause                       | 448 |
| 27.7                      | Disputes Review Board                           | 449 |
| 27.8                      | Geotechnical Design Summary Report              | 449 |
| 27.9                      | Escrow Bid Documents                            | 450 |
| References                |                                                 | 451 |
| Appendix<br>Friction Lo   | A<br>osses for Water in Feet per 100 ft of Pipe | 455 |
| Appendix                  | ( B                                             |     |
| Measurement of Water Flow |                                                 | 461 |
| Appendix                  | C                                               |     |
| Selected                  | Bibliographies                                  | 480 |

**About the Author** 

Index

CONTENTS / XXIII

480

482

483