

K 440571

Usci M-GTEC-26

BEHAVIOR OF DEEP FOUNDATIONS

A symposium sponsored by ASTM Committee D18 on Soil and Rock for Engineering Purposes AMERICAN SOCIETY FOR TESTING AND MATERIALS Boston, Mass., 28 June 1978

ASTM SPECIAL TECHNICAL PUBLICATION 670 Raymond Lundgren, Woodward-Clyde Consultants, editor

04-670000-38

Editorial Staff

Jane B. Wheeler, Managing Editor
Helen M. Hoersch, Associate Editor
Ellen J. McGlinchey, Senior Assistant Editor
Helen Mahy, Assistant Editor

Contents

ntroduction	1
Design and Evaluation of Load Tests on Deep Foundations— L. C. REESE	4
Soil Capacity for Supporting Deep Foundation Members in Clay— M. I. ESRIG AND R. C. KIRBY	27
Stresses in Piles—M. T. DAVISSON	64
Discussion	78
State-of-the-Art Pile Design Practice—Current and Proposed as Reflected in Building Codes—F. M. FULLER	84
Discussion	105
Structural Properties of Timber Piles—R. M. ARMSTRONG	118
Discussion	139
Analysis of Load Tests on Instrumented Steel Test Piles in Compressible Silty Soil—M. BOZOZUK, G. H. KEENAN, AND P. E. PHEENEY	153
Interpreting End-Bearing Pile Load Test Results—G. S. BRIERLEY, D. E. THOMPSON, AND C. W. ELLER	181
Analytical Methods to Predict Pile Capacities—J. R. CHEEKS	199
Failure During Construction and Subsequent Rehabilitation and Performance of a Dynamically Cast-in-Place Concrete Pile Foundation—J. I. CLARK	209
Influence of Residual Installation Forces on the Stress Transfer and Settlement Under Working Loads of Jacked and Bored Piles in Cohesive Soils—R. W. COOKE	231
Load Transfer from Bored, Cast-in-Situ Piles in London Clay-	250

Timber Piles in Standards, Codes, and Practice—E. F. DIEKMANN	264
Discussion	275
Behavior of Steel Piles During Installation and Service— T. D. DISMUKE	282
Influence of Codes and Standards on the Use of Steel Piles— T. D. DISMUKE	300
Capacity of Reinforced and Prestressed Concrete Pile Sections— W. L. GAMBLE	306
Design of High-Performance Prestressed Concrete Piles for Dynamic Loading—B. C. GERWICK, JR. AND H. A. BRAUNER	323
A Rational Procedure for Evaluating the Behavior of Impact-Driven Piles—D. M. HOLLOWAY, G. W. CLOUGH, AND A. S. VESIĆ	335
Load Testing of Instrumented 225-Foot-Long Prestressed Concrete Piles—H. S. LACY	358
Special Requirements for Testing Auger-Placed Grout Piles— G. E. LAMB	381
Interpretation of Load Tests on High-Capacity Driven Piles— G. A. LEONARDS AND D. LOVELL	388
Static and Cyclic Axial Load Tests on a Fully Instrumented Pile— T. D. LU, J. A. FISCHER, AND V. G. MILLER	416
Cyclic Pile Load Testing—Loading System and Instrumentation— T. D. LU, V. G. MILLER, AND J. A. FISCHER	435
Pile Load Tests to Evaluate Load Transfer Mechanisms— M. W. MONTGOMERY	451
Field Tests on Vertical Piles Under Static and Cyclic Horizontal Loading in Overconsolidated Clay—G. PRICE	464
A Simple Approach to Pile Design and the Evaluation of Pile Tests—M. F. RANDOLPH AND C. P. WROTH	484
Determination of Pile Damage by Top Measurements— F. RAUSCHE AND G. G. GOBLE	500

Building Code Requirements for Maximum Design Stresses in Piles—D. M. REMPE	507
Horizontal Subgrade Reaction Estimated from Lateral Loading Tests on Timber Piles—K. E. ROBINSON	520
Field Evaluation of Caisson-Shale Interaction—M. SPANOVICH AND R. G. GARVIN	537
General Discussion—Comments on Working Loads for Pile Foundations—w. f. swiger	558
Influence of Driving Stresses on the Development of High Pile Capacities—C. D. THOMPSON AND D. E. THOMPSON	562
Stress and Deformation in Single Piles Due to Lateral Movement of Surrounding Soils—M. C. WANG, A. H. WU, AND D. J. SCHEESSELE	578
Capacity of Axially Loaded Bent Piles in a Bearing Stratum Overlain by a Thick Layer of Soft Clay—A. H. WU AND R. R. FOX	592
Index	607