PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SLOPE STABILITY ENGINEERING - IS-SHIKOKU'99/MATSUYAMA/SHIKOKU/JAPAN/8-11 NOVEMBER 1999

Slope Stability Engineering

Edited by

Norio Yagi Ehime University, Japan

Takuo Yamagami & Jing-Cai Jiang University of Tokushima, Japan

VOLUME 1

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/1999

Preface Organization

Special lecture

Flow-type failure of slopes ba K.Ishihara, Y.Tsukamoto & S.

Keynote lectures

The limit analysis for slopes: Z.Chen

Using limit equilibrium conce D.G. Fredlund & R.E.G. Scoul

Stability of geosynthetic reinf D.Leshchinsky

The mechanisms, causes and of the Black Sea M.Popescu

Design of slope stabilizing pile H.G. Poulos

1 Geological and geotech

Geoenvironmental factors inf A.M.Elleboudy

Weathering mechanism and s – Effect of hydrothermal activ R.Kitagawa

Site investigation of weathere and slope stabilization *R.J. Maharaj*

Slope Stability Engineering, Yagi, Yamagami & Jiang © 1999 Balkema, Rotterdam, ISBN 9058090795

	XIII
	XV
ased on behavior of anisotropically consolidated sand	3
Theory, methods and applications	
epts in finite element slope stability analysis lar	31
forced steep slopes	49
remediation of cliff instability on the western coast	67
iles	83
hnical site investigations	
fluencing the deterioration of shale in a rockslope	103
slope failures of granitic rocks in Southwest Japan vities	109
ed expansive mudrock slopes: Implications for slope instability	115

۷

Investigation of cut slope consisting of serpentinite and schist H. Kitamura, M. Aoki, T. Nishikawa, T. Yamamoto, M. Suzuki & T. Umezaki	121
Using multibeam sonar surveys for submarine landslide investigations J. Locat, J.V. Gardner, H. Lee, L. Mayer, J. E. Hughes Clarke & E. Kammerer	127
Automatic measurement of pore water pressure in the hard-rock slope and the sliding weathered-rock slope – Field survey in mountainous region in Shikoku Island, Japan <i>E.Tamura & S.Matsuka</i>	135
Field measurement of suction in soil and rainfall in Kagoshima Prefecture R. Kitamura, K. Jomoto, K. Yamamoto, T. Terachi, H. Abe & T. Iryo	141
Application of acoustic emission method to Shirasu slope monitoring T.Fujiwara, K.Monma & A.Ishibashi	147
Acoustic emission technique for monitoring soil and rock slope instability A. Kousteni, R. Hill, N. Dixon & J. Kavanagh	151
Hydraulic fracturing as a mechanism of rapid rock mass slides S. Hasegawa & T. Sawada	157
Evolution of ridge-top linear depressions and a disintegration process of mountains K. Mokudai & M. Chigira	163
Geological characteristics of landslides of the soft rock type, Central Japan T.Fujita	169
Study of configuration, scale and distribution of landslides <i>S.Ueno</i>	175
Geodynamics and spatial distribution of properties of sea cliff colluvium E. Dembicki & W. Subotowicz	181
A mineralogical study of the mechanism of landslide in the serpentinite belt K.Yokota, R.Yatabe & N.Yagi	187
Detailed geotechnical study in Modi Khola Hydroelectric Project, Western Nepal V. Dangol & T.R. Paudel	193
Local instability in saturated colluvial slopes in southern Brazil W.A. Lacerda	199
2 Soil slope stability analyses	
A new theory on instability of planar-sliding slope – Stiffness effect instability theory Qin Siqing	207
Ultimate state of a slope at non-linear unsteady creep and damage S.A. Elsoufiev	213
Application of FEM on the basis of elasto-viscoplastic model to landslide problems <i>H. Fujii, S. Nishimura, T. Hori & K. Shimada</i>	219
Coupled excavation analyses of vertical cut and slopes in clay	
T.Hoshikawa, T.Nakai & Y.Nishi	

4

VI

n a potentially unstable urban hillside in San Marino i & F.Bianchi	233
e Euganean Hills induced by quarrying	239
failure along thin mudstone deposit due to excavation hagata, K. Narita & Y. Ohne	245
of slope stability analysis <i>lijoy</i>	249
esentation of Taylor's stability chart	253
es on safety factors and inter-slice forces in FEM	259
lering the deformation of slices uzaki & H. Hayamizu	265
a spring attached to inter-slice planes	271
nalysis of locally loaded slopes	277
th pressure of cohesive backfill with inclined slope surface Law, K.Ugai & Q.Yang	281
pagation in clay slopes	287
f slopes based on a LEM ng & S.Yamabe	293
ased on a method of non-vertical slices	299
shear strength from a circular slope failure Jeta	305
odel parameters based on FEM and NLSSQP method	311
soil slopes and back analysis for its parameters	
plant in the second	
lyses	
e analysis method g & J.Wang	
am and retaining wall constructed on dip bedrock	329

VII

and the second
그는 것이 아파 이 가슴에 앉아 있는 것이 많이 많이 했다.
the product of the second s
والأعطابيين المستكل والمراكب والم
and the second
and the second state of the second
a second seco

Soil-water coupling analysis of progressive failure of cut slope using a strain softening model <i>T.Adachi, F.Oka, H.Osaki, H. Fukui & F.Zhang</i>	333
A back analysis in assessing the stability of slopes by means of surface measurements S. Sakurai & T. Nakayama	339
Numerical simulation of excavation of the permanent ship lock in the Three Gorges Project Y. Zhang & K. Yin	345
Numerical simulation of the buckling failure in rock slopes Y. Hu & HG. Kempfert	349
Fuzzy-based stability investigation of sliding rock masses N.O.Nawari & R.Liang	355
Stability evaluation of discontinuous rock slope K. Kawamura & M. Nishioka	361
Earthquake and seepage effects on the mobilised shear strength of closely jointed rock <i>M.J. Pender</i>	367
4 Effects of rainfall and groundwater	
Design chart for cut slope in unsaturated residual soils R.Subramaniam & F.H.Ali	375
Factors affecting on water retention characteristic of soils K.Kawai, D.Karube & H.Seguchi	381
Suction profiles and stability of residual soil slopes E.C.Leong, B.K.Low & H.Rahardjo	387
Effects of perched water table on slope stability in unsaturated soils L.T.Huat, F.H.Ali, S. Mariappan & P.K. Soon	393
Field suction variation with rainfall on cut slope in weathered sedimentary residual soil L.T.Huat, F.H.Ali & S.Mariappan	399
Study of slope stability for Pleistocene cemented sandy sediments in Singapore (Old Alluvium) K.K.Poh, P.B.Ng & K.Orihara	405
Influence of pore water pressures in partly submerged slopes on the critical pool level E.N.Bromhead, A.J.Harris & P.D.J.Watson	
Role of pore water and air pressures on slope stability in reservoir for pumped storage power plant T.Sato, N.Nishizawa, M.Wakamatsu, Y.Hiraiwa & I.Kumazaki	
Seepage characteristics of decomposed granite soil slope during rainfall S. Sasaki, S. Araki & K. Nishida	423
Relation between slope stability and groundwater flow caused by rainfalls <i>M.Enoki & A.A.Kokubu</i>	429

Salient aspects of numerical a C.-H.Wang

Centrifuge model tests and sta of decomposed granite soil slo S.Yoshitake & K.Onitsuka

Centrifuge tests on slope failu H.G.B.Allersma

Reinforcement's effects in the *M. Shimizu*

Investigation of danger rainfal H. Miki, A. Fujii & M. Furuta

Predicting rainfall-induced slo M.Nishigaki, A.Tohari & M.K

Analytical study on the slope s A.Togari-Ohta, T.Sugiyama, T.

Evaluation of critical rainfall T.Sugii, K.Yamada & T.Uno

Strategy for prevention of natu R. Kitamura, T. Iryo, H.Abe, H.

Relationships between rainfall S. Murata, H. Shibuya & K. Ha

Threshold rainfall for Beragala A.K.Dissanayake, Y.Sasaki &

The importance of the groundy of investigations on the landsli *G.Rasula & M.Rasula*

Landslides induced by rainsto D. Han & K. Kim

Characteristics of Cretaceous g T.Yamamoto, M. Suzuki, N. Mat

Seepage analyses of embankn K. Kato & S. Sakajo

Instability analyses of embank S. Sakajo & K. Kato

Chemical effect of groundwate Z.Xu & R.Huang

Slope failures triggered by an S.Yasuda, Y.Yoshida, T.Kobaya

VIII

analyses of rainfall induced slope instability	435
tability analysis on mobilizing process of shear strength lope	441
ure during water infiltration	447
e tank-model prediction of slope failures due to rainfalls	453
all prediction system for natural and cut slopes	459
ope failures from moisture content measurement Komatsu	465
stability during rainfall and the rainfall indexes	471
with logit model	
tural disaster due to slope failure I.Yakabe & K.Yamamoto	483
lls and landslides after forest damages by typhoons	
la landslide in Sri Lanka N.H.Seneviratne	495
lwater regime studies of unstable slopes – An example lide 'Plavinac', Yugoslavia	
orm in the Poun area of Chungchongbukdo Province	
granite slopes that failed during heavy rainfall	
nents on Tokaido-Shinkansen in long term rainfalls	
kments on Tokaido-Shinkansen in heavy rainfalls	527
ter from acid rain on slope evolution	533
earthquake and a heavy rain in Chiba ashi & T.Mizunaga	539

IX

	÷ *	
No. I AND	and a war of	1 0
	the state of the	
	the state	Nu
	*	T.Y
	10	Ef
	1	F.0
		5
		Co Y.
		SI
		Ea
		T.
		A
		T.
		St
		Y.
		E
		of
		G
		Ri F.
		D
		M
		D
		D
		0
		T.
		D J.
		E
		P.
		R
		Y.
		E
		u
		T
		E
		R R
		P
		E E
		a da

Numerical evaluation of the effects of drainage pipes T.Yamagami, K.Nishida & JC.Jiang	545
Effects of horizontal drains on ground water level and slope stability <i>F.Cai & K.Ugai</i>	551
5 Effects of seismicity	
Collapse of high embankment in the 1994 far-off Sanriku Earthquake Y. Shioi & S. Sutoh	559
Slope instability of large embankments in residential areas caused by the Hyogoken-Nanbu Earthquake, 1995 <i>T.Kamai, Y.Kobayashi & H.Shuzui</i>	565
Analysis of toppling failure of mountain slope caused by the Hyogoken-Nanbu Earthquake T.Okimura, N.Yoshida & N.Torii	571
Stress condition and consequence of liquefaction on weathered granitic sands Y.Okada, K. Sassa & H. Fukuoka	577
Effects of density, stress state and shear history on sliding-surface liquefaction behavior of sands in ring-shear apparatus G.Wang & K.Sassa	
Real seismic-wave loading ring-shear test on the Nikawa landslide F.W.Wang, K. Sassa & H. Fukuoka	589
Dynamic properties of fine-grained soils in pre-sheared sliding surfaces M.Yoshimine, R. Kuwano, J. Kuwano & K. Ishihara	595
Dependence of pore pressure generation on frequency of loading at sliding surface D.A.Vankov & K.Sassa	601
On-line earthquake response tests on embankments founded on saturated sandy deposits T.Fujii, M.Hyodo, Y.Nakata, K.Yabuki & S.Kusakabe	607
Dynamic centrifuge tests of embankments on sloped ground and their stability analyses J.Koseki, O.Matsuo, K.Kondo & S.Nishihara	613
Evaluation of liquefaction potential for loose minefill slopes P.Kudella	619
Runout distances of earthquake-induced landslides Y. Kobayashi	625
Evaluation of measured vertical and horizontal residual deformation at crest of rockfill dam under earthquake <i>T.Okamoto</i>	
Displacements of slopes subjected to seismic loads R.L. Michalowski & L.You	637
Permanent displacement analysis of circular sliding block during shaking H.R.Razaghi, E.Yanagisawa & M.Kazama	641

Dynamic analyses of slopes ba A.Wakai & K.Ugai

Slope instability due to rainfal K. Shimada, H. Fujii, S. Nishim.

Shaking table tests of concrete S. Mori, T. Matsuyama & T.Us

Shakedown analysis of soil for M.Luan, Y.Cao & K.Ugai

Author index

Х

based on a simple strain-softening model of soil	647
all and earthquake mura, T.Nishiyama & T.Morii	653
te block retaining walls shiro	657
oundations under varied loads	663

669

XI