## Fluvial Processes in River Engineering

Howard H. Chang

San Diego State University



A WILEY-INTERSCIENCE PUBLICATION

John Wiley & Sons

.

New York

Chichester

Brisbane

Toronto

Singapore

# CONTENTS

| PAR  | RT I   | FLUVIAL GEOMORPHOLOGY                               | 1   |
|------|--------|-----------------------------------------------------|-----|
| 1.   | Intro  | duction                                             | 3   |
|      | 1.1    | The Fluvial System / 3                              |     |
|      | 1.2    | Variables for Alluvial Rivers / 4                   |     |
| 2.   | Over   | view of River Morphology                            | 7   |
|      | 2.1    | Regime Concept / 7                                  |     |
|      | 2.2    | Channel-Forming Discharge / 8                       |     |
|      | 2.3    | Longitudinal Stream Profile / 8                     |     |
|      | 2.4    | River Classifications / 10                          |     |
|      | 2.5    | Thresholds in River Morphology / 13                 |     |
|      | 2.6    | Hydraulic Geometry / 20                             |     |
|      | 2.7    | Meander Planform / 24                               |     |
|      | 2.8    | Geomorphic Analysis of River Channel Responses / 27 |     |
| Refe | erence | es for Part I                                       | 31  |
| PAR  | ат п   | FOUNDATIONS OF FLUVIAL PROCESSES                    | 35  |
| 3.   | Hydr   | aulics of Flow in River Channels                    | 37  |
|      | 3.1    | Shear-Stress Distribution / 38                      |     |
|      | 3.2    | Uniform-Flow Formulas / 39                          |     |
|      | 3.3    | Boundary-Layer Regions / 41                         |     |
|      | 3.4    | Turbulent Shear Flow in Channels / 43               |     |
|      | 3.5    | Fixed-Bed Flow Resistance / 46                      |     |
|      | 3.6    | Flow Resistance in Gravel-Bed Rivers / 51           |     |
|      | 3.7    | Composite Roughness and Side-Wall Corrections / 53  |     |
|      | 3.8    | Energy Equation and Water-Surface Profiles / 56     |     |
|      | 3.9    | Unsteady Open-Channel Flow / 59                     | 100 |
|      |        | References / 67                                     |     |
|      |        |                                                     |     |

#### 4. Physical Properties of Sediment

- 4.1 Size of Sediment Particles / 70
- 4.2 Shape Factor of Sediment Particles / 73
- 4.3 Fall Velocity / 73
- 4.4 Angle of Repose for Sediments / 77 References / 79

#### 5. Scour Criteria and Scour-Related Problems

- 5.1 Critical Shear / 80
- 5.2 Shields Diagram / 82
- 5.3 Other Scour Criteria Based on Shear Stress / 85
- 5.4 Critical Shear on Side Slopes / 85
- 5.5 Permissible Velocity / 88
- 5.6 Distribution of Boundary Shear in Trapezoidal Channels / 90
- 5.7 Boundary Shear in Bends / 92
- 5.8 Design of Stable Channels Subject to Scour But Not to Silt / 93
- 5.9 Local Scour around Bridge Piers / 96
- 5.10 Local Scour around Embankments / 100 References / 103

#### 6. Alluvial Bed Forms and Flow Resistance

- 6.1 Bed Forms / 105
- 6.2 Prediction of Bed Forms / 110
- 6.3 Bed-Form Dimensions / 114
- 6.4 Effect of Water Temperature / 116
- 6.5 Stage–Discharge Predictors for Alluvial Channels / 118 References / 128

#### 7. Sediment Movement in Rivers

- 7.1 Bed-Load Formulas / 133
- 7.2 Turbulent Diffusion and Diffusion Equation / 143
- 7.3 Suspended-Sediment Discharge / 146
- 7.4 Bed-Material Load Formulas / 154
- 7.5 Evaluation of Formulas / 163
- 7.6 Effect of Water Temperature / 166
- 7.7 Effect of Suspended Sediment on Flow Characteristics / 167

131

105

80

190

| 7.8 | Sediment | Transport | in | Nonuniform | Flow | 1 | 172 |
|-----|----------|-----------|----|------------|------|---|-----|
|     |          |           |    |            |      |   |     |

- 7.9 Sediment Sorting / 176
- 7.10 Sampling Fluvial Sediment / 181 References / 185

### 8. Flow in Curved River Channels

- 8.1 Basic Equations / 190
- 8.2 Transverse Velocity Profiles for Fully Developed Flow / 193
- 8.3 Boundary Shear Stress / 197
- 8.4 Transverse Bed Slope and Grain-Size Distribution / 199
- 8.5 Lateral Bed-Load Transport / 206
- 8.6 Energy Expenditure in Curved Open Channels / 208
- 8.7 Streamwise Variation of Spiral Motion / 212
- 8.8 Computation of Flow through Curved Channels / 216
- 8.9 Transverse Flow and Cross-Stream Flow in River Channels / 220 References / 222

| PA  | RT III | REGIME RIVERS AND RESPONSES                              | 225 |
|-----|--------|----------------------------------------------------------|-----|
| 9.  | Analy  | tical Basis for Hydraulic Geometry                       | 227 |
|     | 9.1    | Applicable Physical Relationships / 227                  |     |
|     | 9.2    | Physical Relationships Pertaining to Stable Width / 228  |     |
| 10. | Desig  | n of Stable Alluvial Channels                            | 233 |
|     | 10.1   | Regime Methods for Stable Alluvial Canal Design / 234    |     |
|     | 10.2   | Rational Method for Stable Alluvial Canal Design / 241   |     |
|     | 10.3   | Design of Stable Alluvial Canals in a System / 250       |     |
|     | 10.4   | Maturing of Canals / 253                                 |     |
|     | 10.5   | Hydraulic Geometry of Gravel-Bed Streams / 254           |     |
| 11. | Analy  | tical River Morphology                                   | 261 |
|     | 11.1   | Analysis of River Meanders / 262                         |     |
|     | 11.2   | Power Approach to River Morphology and Thresholds / 271  |     |
|     | 11.3   | Channel Geometry, Channel Patterns, and Thresholds / 277 |     |
|     | 11.4   | River Channel Changes: Adjustments of Equilibrium / 283  |     |
|     | 11.5   | Formation of Alternate Bars / 290                        |     |
|     |        |                                                          |     |

| 12. Plan  | Geometry and Processes of River Meanders                       | 298 |
|-----------|----------------------------------------------------------------|-----|
| 12.1      | Sine-Generated Curve / 299                                     |     |
| 12.2      | Meander Path Based on Streamwise Variation of Helical Motion / | 300 |
| 12.3      | Processes Governing Meander Bend Migration / 309               |     |
| 12.4      | On the Cause of River Meandering / 312                         |     |
| Reference | s for Part III                                                 | 316 |
| PART IV   | MODELING OF RIVER CHANNEL CHANGES                              | 323 |
| 13. Mathe | ematical Model for Erodible Channels                           | 325 |
| 13.1      | Physical Foundation of Fluvial Process-Response / 326          |     |
| 13.2      | Channel Width Adjustments during Scour and Fill / 327          |     |
| 13.3      | Analytical Basis of the FLUVIAL Model / 330                    |     |
| 13.4      | Water Routing / 331                                            |     |
| 13.5      | Sediment Routing / 333                                         |     |
| 13.6      | Simulation of Changes in Channel Width / 336                   |     |
| 13.7      | Simulation of Changes in Channel-Bed Profile / 338             |     |
| 13.8      | Simulation of Changes Due to Curvature Effect / 339            |     |
| 13.9      | Test and Calibration of Mathematical Model / 340               |     |
| 14. Comp  | outer-Aided Study of Alluvial Rivers                           | 342 |
| 14.1      | General Scour at Bridge Crossings / 342                        |     |
| 14.2      | Gradual Breach Morphology / 352                                |     |
| 14.3      | Stream Channel Changes Induced by Sand and Gravel Mining / 3   | 358 |
| 14.4      | Tidal Responses of River and Delta System / 364                |     |
| 14.5      | Water and Sediment Routing through a Curved Channel / 371      |     |
| 14.6      | Fluvial Design of River Bank Protection / 377                  |     |
| 14.7      | Stream Gaging of Fluvial Sediment / 384                        |     |
| Reference | s for Part IV                                                  | 391 |

|        |       |                                | CONTENTS | XIII |
|--------|-------|--------------------------------|----------|------|
| PART V |       | RIVER ENGINEERING              |          | 393  |
| 15.    | River | Training                       |          | 395  |
|        | 15.1  | Bank Protection / 396          |          |      |
|        | 15.2  | Dikes / 403                    |          |      |
|        | 15.3  | Grade-Control Structures / 407 |          |      |
|        |       | References / 411               |          |      |
| AP     | PENDI | X: SOME COMMONLY USED TABLES   |          | 413  |
| 210300 | ME IN |                                |          | 417  |
| SU     | BJECT | ' INDEX                        |          | 423  |