Revetment systems against wave attack
A design manual

Kirsty McConnell

Supervising Editor, William Allsop
Contents

PREFACE ... III
ACKNOWLEDGEMENTS .. V
GLOSSARY .. VII
NOTATION ... IX
CONTENTS .. XIII
ILLUSTRATIONS ... XVII

1. INTRODUCTION ... 1
 1.1. Structure of the manual, 3
 1.2. Terms of reference, 4
 1.3. Purpose of the manual, 4
 1.4. Definitions, 4

2. REVETMENT FUNCTION AND PERFORMANCE 7
 2.1. Revetment functions & types, 9
 2.2. Design life / performance, 9

3. REVETMENT COMPONENTS 13
 3.1. Cover layer, 15
 3.2. Filter layer, 16
 3.2.1. Granular filters, 16
 3.2.2. Geotextile filters, 16
 3.3. Other layers, 17
 3.4. Toe protection, 18
 3.5. Crest protection, 18
 3.6. Landward face of embankments, 18

4. MATERIALS FOR REVETMENT CONSTRUCTION 19
 4.1. Rock, 21
 4.2. Concrete blocks and slabbing, 23
4.3. Concrete mattresses, 30
4.4. Asphalt, 32
 4.4.1. Asphalitic concrete, 33
 4.4.2. Mastic & grouting mortars, 34
 4.4.3. Dense Stone Asphalt, 35
 4.4.4. Open Stone Asphalt, 35
 4.4.5. Lean Sand Asphalt, 36
4.5. Gabions, 38

5. IDENTIFICATION OF LIKELY FAILURE MODES
 5.1. Uplift pressures, 41
 5.2. Sliding, 42
 5.3. Wave impacts, 42
 5.4. Scour, 42
 5.5. Overtopping, 43
 5.6. Geotechnical failure, 43

6. DESIGN PROCESS
 6.1. Methodology, 47
 6.2. Information required for design, 50
 6.2.1. Hydraulic conditions, 50
 6.2.2. Geotechnical conditions, 50
 6.2.3. Geometry, 51
 6.2.4. Structure performance, 52
 6.2.5. Constraints, 52

7. HYDRAULIC BOUNDARY CONDITIONS
 7.1. Water levels, 55
 7.1.1. Mean water level, 55
 7.1.2. Tides, 55
 7.1.3. Storm surge, 56
 7.1.4. Water level prediction, 56
 7.2. Prediction of waves in coastal locations, 58
 7.2.1. Deep water wave conditions, 58
 7.2.2. Wave prediction methods, 59
 7.2.3. Shallow water waves, 60
 7.3. Prediction of waves on inland waters, 63
 7.3.1. Derivation of wind speed, 63
 7.3.2. Derivation of fetch length, 65
 7.3.3. Wave prediction, 65

8. GEOTECHNICAL BOUNDARY CONDITIONS
 8.1. General considerations, 69
 8.2. Grain size distribution, 69
 8.3. Angle of internal friction, 70
 8.4. Permeability, 71
9. DESIGN OF INITIAL CROSS-SECTION
 9.1. Slope, 75
 9.2. Crest elevation, 76
 9.3. Cover layer thickness, 78
 9.4. Filter, 78
 9.5. Permeability, 79

10. DESIGN METHODS
 10.1. Overtopping, 83
 10.2. Scour, 85
 10.3. Rock and rip-rap armour, 87
 10.3.1. Thin armour layers, 90
 10.3.2. Influence of armour grading, 91
 10.4. Concrete blockwork, 91
 10.4.1. General design method, 91
 10.4.2. Slabs, 92
 10.4.3. Cellular blockwork, 94
 10.4.4. Gravel blinding, 95
 10.4.5. Sliding, 96
 10.5. Concrete mattresses, 98
 10.6. Asphalt, 100
 10.6.1. Impermeable asphaltic revetments – uplift & sliding, 100
 10.6.2. Calculation of layer thickness for Open Stone Asphalt, 102
 10.6.3. Wave impact pressures for all asphaltic revetment types, 103
 10.6.4. Grouting of rock armour layers, 106
 10.7. Safety factors, 107

11. DETAILED DESIGN
 11.1. Filter, 111
 11.1.1. Granular filter design, 112
 11.1.2. Geotextile filter design, 113
 11.2. Toe protection, 114
 11.3. Crest protection, 116
 11.4. Termination details, 118
 11.5. Landward face protection, 119

12. OTHER CONSIDERATIONS
 12.1. Construction aspects, 123
 12.2. Specifications, 124
 12.3. Preparation of slope, 124
 12.4. Typical tolerances, 126

13. INSPECTION, MAINTENANCE AND REPAIR

NOTATION
Appendix 1 Typical specifications, 131
Appendix 2 Example design calculations, 141
Appendix 3 Summary of design methods, 151
References 159