CONTENTS

Preface x iii

Chapter 1 Introduction
1-1 Foundations—Definition and Purpose 1
1-2 Foundation Classifications 2
1-3 Foundation Site and System Economics 3
1-4 General Requirements of Foundations 5
1-5 Foundation Selection 6
1-6 SI and Fps Units 6
1-7 Computational Accuracy versus Design Precision 9

Chapter 2 Soil Mechanics in Foundation Engineering
2-1 Introduction 10
2-2 Foundation Materials 12
2-3 Soil Volume and Density Relationships 13
2-4 Major Factors Which Affect the Engineering Properties of Soils 16
2-5 Routine Laboratory Tests 19
2-6 Soil Classification in Foundation Design 24
2-7 Soil Classification Terms 25
2-8 In Situ Stresses and F, Conditions 32
2-9 Soil Water—Soil Hydraulics 35
2-10 Consolidation Principles 41
2-11 Shear Strength 50
2-12 Sensitivity and Thixotropy 60
2-13 Stress Paths 61
2-14 Elastic Properties of Soil 66
2-15 Anisotropic and Anisotropic Soil Masses 70

v
Chapter 5 Alternative Methods of Computing Elastic Settlements

5-1 The Settlement Problem
5-2 Stress in a Soil Mass Due to Footing Pressure
5-3 The Boussinesq Method for Evaluating Elastic Settlements
5-4 Terzaghi's Method for Evaluating Elastic Settlements
5-5 Immediate Elastic Settlement Computation—Theory
5-6 Immediate Settlements—Application
5-7 Alternative Methods of Computing Elastic Settlements
CONTENTS

Chapter 10 Mat Foundations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>10-1</td>
<td>Introduction</td>
<td>349</td>
</tr>
<tr>
<td>10-2</td>
<td>Types of Mat Foundations</td>
<td>349</td>
</tr>
<tr>
<td>10-3</td>
<td>Bearing Capacity of Mat Foundations</td>
<td>350</td>
</tr>
<tr>
<td>10-4</td>
<td>Mat Settlements</td>
<td>351</td>
</tr>
<tr>
<td>10-5</td>
<td>Design of Mat Foundations</td>
<td>352</td>
</tr>
<tr>
<td>10-6</td>
<td>Finite-Element Method for Mats</td>
<td>354</td>
</tr>
<tr>
<td>10-7</td>
<td>Finite-Element Method for Mat Foundations</td>
<td>361</td>
</tr>
<tr>
<td>10-8</td>
<td>Mat-Infrastructure Interaction</td>
<td>363</td>
</tr>
<tr>
<td>10-9</td>
<td>Circular Mats or Plates</td>
<td>374</td>
</tr>
</tbody>
</table>

Chapter 11 Lateral Earth Pressure

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11-1</td>
<td>The Lateral Earth Pressure Problem</td>
<td>378</td>
</tr>
<tr>
<td>11-2</td>
<td>Active Earth Pressure</td>
<td>378</td>
</tr>
<tr>
<td>11-3</td>
<td>Passive Earth Pressure</td>
<td>379</td>
</tr>
<tr>
<td>11-4</td>
<td>Coulomb Earth-Pressure Theory</td>
<td>381</td>
</tr>
<tr>
<td>11-5</td>
<td>Rankine Earth Pressures</td>
<td>381</td>
</tr>
<tr>
<td>11-6</td>
<td>Active and Passive Earth Pressure Using Theory of plasticity</td>
<td>382</td>
</tr>
<tr>
<td>11-7</td>
<td>Earth Pressure on Walls, Soil-Structure Effects, Rupture Zone</td>
<td>392</td>
</tr>
<tr>
<td>11-8</td>
<td>Reliability of Lateral Earth Pressures</td>
<td>396</td>
</tr>
<tr>
<td>11-9</td>
<td>Soil Properties and Lateral Earth Pressure</td>
<td>399</td>
</tr>
<tr>
<td>11-10</td>
<td>Earth-Pressure Theories in Retaining-Wall Problems</td>
<td>399</td>
</tr>
<tr>
<td>11-11</td>
<td>Graphical and Computer Solutions for Lateral Earth Pressure</td>
<td>401</td>
</tr>
<tr>
<td>11-12</td>
<td>Lateral Pressures by Theory of Elasticity for Surcharges</td>
<td>404</td>
</tr>
<tr>
<td>11-13</td>
<td>Other Causes of Lateral Pressure</td>
<td>412</td>
</tr>
<tr>
<td>11-14</td>
<td>Pressures in Silt, Grain Elevators, and Coal Bins</td>
<td>419</td>
</tr>
</tbody>
</table>

Chapter 12 Retaining Walls

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12-1</td>
<td>Introduction</td>
<td>431</td>
</tr>
<tr>
<td>12-2</td>
<td>Common Provisions of Retaining Walls</td>
<td>431</td>
</tr>
<tr>
<td>12-3</td>
<td>Soil Properties for Retaining Walls</td>
<td>433</td>
</tr>
<tr>
<td>12-4</td>
<td>Stability of Walls</td>
<td>438</td>
</tr>
</tbody>
</table>

Chapter 13 Sheet-Pile Walls—Cantilevered and Anchored

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13-1</td>
<td>Introduction</td>
<td>474</td>
</tr>
<tr>
<td>13-2</td>
<td>Soil Properties for Sheet-Pile Walls</td>
<td>474</td>
</tr>
<tr>
<td>13-3</td>
<td>Types of Sheetpiling</td>
<td>475</td>
</tr>
<tr>
<td>13-4</td>
<td>Safety Factors for Sheet-Pile Walls</td>
<td>479</td>
</tr>
<tr>
<td>13-5</td>
<td>Cantilever Sheetpiling</td>
<td>481</td>
</tr>
<tr>
<td>13-6</td>
<td>Anchored Sheetpiling</td>
<td>489</td>
</tr>
<tr>
<td>13-7</td>
<td>Rowe’s Moment Reduction Applied to the Finite-Element Method</td>
<td>495</td>
</tr>
<tr>
<td>13-8</td>
<td>Finite-Element Analysis of Sheet-Pile Walls</td>
<td>499</td>
</tr>
<tr>
<td>13-9</td>
<td>Walls and Anchoring for Anchored Sheetpiling</td>
<td>506</td>
</tr>
</tbody>
</table>

Chapter 14 Braced, Tieback, and Slurry Walls for Excavations

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>14-1</td>
<td>Introduction</td>
<td>516</td>
</tr>
<tr>
<td>14-2</td>
<td>Soil Pressures on Braced Shoring or Cofferdams</td>
<td>516</td>
</tr>
<tr>
<td>14-3</td>
<td>Conventional Design of Single-Wall (Braced) Cofferdams</td>
<td>519</td>
</tr>
<tr>
<td>14-4</td>
<td>Estimation of Ground Loss around Excavations</td>
<td>522</td>
</tr>
<tr>
<td>14-5</td>
<td>Finite-Element Analysis for Braced Excavations</td>
<td>527</td>
</tr>
<tr>
<td>14-6</td>
<td>Instability Due to Heavy of Bottom of Excavation</td>
<td>536</td>
</tr>
<tr>
<td>14-7</td>
<td>Other Causes of Cofferdam Instability</td>
<td>539</td>
</tr>
<tr>
<td>14-8</td>
<td>Construction Dewatering</td>
<td>540</td>
</tr>
<tr>
<td>14-9</td>
<td>Slurry-Wall or Tieback Construction</td>
<td>544</td>
</tr>
</tbody>
</table>

Chapter 15 Cellular Cofferdams

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>15-1</td>
<td>Cellular Cofferdams: Types and Uses</td>
<td>548</td>
</tr>
<tr>
<td>15-2</td>
<td>Cell Fill</td>
<td>548</td>
</tr>
<tr>
<td>15-3</td>
<td>Stability and Design of Cellular Cofferdams</td>
<td>552</td>
</tr>
<tr>
<td>15-4</td>
<td>Practical Considerations in Cellular Cofferdam Design</td>
<td>553</td>
</tr>
<tr>
<td>15-5</td>
<td>Design of Diaphragm Cofferdam Cell</td>
<td>563</td>
</tr>
<tr>
<td>15-6</td>
<td>Circular-Cofferdam Design</td>
<td>565</td>
</tr>
<tr>
<td>15-7</td>
<td>Cloverleaf-Cofferdam Design</td>
<td>568</td>
</tr>
</tbody>
</table>
To simplify and condense the reference list, the following abbreviations are used:

<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AASHTO</td>
<td>American Association of State Highway and Transportation Officials</td>
</tr>
<tr>
<td>ACI</td>
<td>American Concrete Institute, Detroit, Michigan</td>
</tr>
<tr>
<td>ASCE</td>
<td>American Society of Civil Engineers</td>
</tr>
<tr>
<td>JACI</td>
<td>Journal of American Concrete Institute (monthly)</td>
</tr>
<tr>
<td>ICE</td>
<td>Institution of Civil Engineers (London)</td>
</tr>
<tr>
<td>JSMFE</td>
<td>Proceedings of International Conference on Soil Mechanics and Foundation Engineering</td>
</tr>
<tr>
<td>PSC</td>
<td>Proceedings of Soil Mechanics and Foundation Division, ASCE, specialty conferences as follows:</td>
</tr>
<tr>
<td></td>
<td>1st PSC = Shear Strength of Cohesive Soils, Boulder, Colo. (1960)</td>
</tr>
<tr>
<td></td>
<td>2d PSC = Design of Foundations for Control of Settlement, Northwestern University, Evanston, Ill. (1966)</td>
</tr>
<tr>
<td></td>
<td>4th PSC = Lateral Stresses in the Ground and Design of Earth Retaining Structures, Cornell University, Ithaca, N.Y. (1975)</td>
</tr>
<tr>
<td></td>
<td>5th PSC = Performance of Earth and Earth Supported Structures, Purdue University, Lafayette, Ind. (1974)</td>
</tr>
<tr>
<td></td>
<td>6th PSC = Analysis and Design in Geotechnical Engineering, University of Texas, Austin, Tex. (1974)</td>
</tr>
<tr>
<td>JSM5</td>
<td>In Situ Measurements of Soil Properties, North Carolina State University, Raleigh, N.C. (1975)</td>
</tr>
<tr>
<td>JSD</td>
<td>Rock Engineering for Foundations and Slopes, University of Colorado, Boulder, Colo. (1978)</td>
</tr>
<tr>
<td>JSD</td>
<td>Geotechnical Practice for Disposal of Solid Waste Materials, University of Michigan, Ann Arbor, Mich. (1977)</td>
</tr>
<tr>
<td>JSD</td>
<td>Earthquake Engineering and Soil Dynamics, Painters, Calif. (1978)</td>
</tr>
<tr>
<td>ASME</td>
<td>American Society for Mechanical Engineers</td>
</tr>
</tbody>
</table>

REFERENCES

To the right, a list of references is provided, including titles of journals, conference proceedings, and books. Each entry is cited with the appropriate abbreviation and publication details. The list is comprehensive, covering a range of topics from geotechnical engineering to soil mechanics and foundation practices.

ASTM STP
American Society for Testing and Materials Special Technical Publication (with appropriate number)

American Wood Preservers Institute, 2600 Virginia Avenue, Washington, D.C.
AWPF

Canadian Geotechnical Journal, Ottawa, Canada - CANP
Engineering News-Record, New York (weekly)

Institution of Civil Engineers (London)
ICE

Proceedings of International Conference on Soil Mechanics and Foundation Engineering

 For ICMSFE = Harvard University (1950)
 1st ICMSFE = Rotterdam, Holland (1948)
 2d ICMSFE = Zurich, Switzerland (1953)
 3rd ICMSFE = London (1957)
 4th ICMSFE = Paris (1961)
 5th ICMSFE = Montreal (1964)
 6th ICMSFE = Mexico City (1969)
 7th ICMSFE = Moscow (1971)
 8th ICMSFE = Tokyo (1979)
 9th ICMSFE = Stockholm (1981)

SMFE

Soil Mechanics and Foundation Engineering

Highway Research Board, Highway Research Record, etc., published by National Academy of Science, Washington, D.C.

ACI (1957), Recommended Practice for Design and Construction of Concrete Bins, Silos and Bunkers for Storing Granular Materials, Report of ACI Committee 338, JACI, October, pp. 329-345

ACI Committee 435 (1968), "Suggested Design Procedures for Combined Footings and Mais," JACI, October, pp. 1041-1077 (new committee 734)

ASCE (1964), Revised Bibliography on Chemical Grouting, JSMFD ASCE, vol. 92, SM 6, November, pp. 36-46.
Ballard, R. J., J. Jr., and F. G. McClain (1979), Seattle Field Methods for In-Soil Dense, 7th PSC ASCE, vol. 1, pp. 121-150.
Barrenbein, P. (1960), Short Description of a Field Method with Core Shaped Sampling Apparatus, 1st ICSCME, vol. 1, pp. 7-10.
Bureau, L. et al. (1969), Reduction of Negative Skin Friction on Steel Piles to Rock, 7th ICSCME, vol. 2, pp. 27-34.
Brown, G. S. et al. (1979), Interpreting End-Bearing Pile Load Test Results, ASTM STP 470, pp. 181-190.

ENR (1964), "Cansevle Truss Hidro (Chicago)," Sep. 38, p. 13 (also see editorial).

Other (1947), Investigation of the Strength of the Connection between a Concrete Cap and the Embankment End of a Steel-H-Pile, Department of Highway Research Report 1, December.

Owens, D. (1963), Cellular Coefficients, Calculation of Methods and Model Tests, Danish Geotechnical Institute no. 14, Copenhagen.

Purushothamaker, P. et al. (1975), Bearing Capacity of Essentially Loaded Strip Footing on Two-Layer Cohesionless Soils, Proceedings of 4th StraitVision Conference on Soil Engineering, Malaysia, pp. 6-10 to 4-75.

