## Channels and Channel Control Structures

Proceedings of the 1st International Conference on Hydraulic Design in Water Resources Engineering: Channels and Channel Control Structures, University of Southampton, April 1984.

Editor: K.V.H. Smith



A Computational Mechanics Centre Publication Springer-Verlag Berlin Heidelberg New York Tokyo 1984

## CONTENTS

PREFACE

| 1. CONTROL AND DIVERSION STRUCTURES                                                                                  |       |
|----------------------------------------------------------------------------------------------------------------------|-------|
| Factors Affecting Brink Depth in Rectangular<br>Overfalls                                                            |       |
| G.C. Christodoulou, G.C. Noutsopoulos and<br>S.A. Andreou                                                            | 1-3   |
| Barrages on Alluvial Rivers<br>C.P. Sinha and D.P. Singh                                                             | 1-19  |
| Comparative Discharge Performance of Side<br>and Normal Weirs                                                        | 1 22  |
| Nandana Vittal and N.K. Rastogi                                                                                      | 1-33  |
| Model Studies on Local Scour<br>A. Qadar                                                                             | 1-45  |
| Hydraulic Research on Irrigation Canal Falls<br>S.K.A. Naib                                                          | 1-59  |
| Scour at Bridge Piers in Meandering Channels - I<br>M. Nouh                                                          | 1-75  |
| Scour at Bridge Piers in Meandering Channels - II<br>M. Nouh                                                         | 1-85  |
| Vortex Formation at Pipe-Offtake in an Open                                                                          |       |
| Channel<br>P.K. Bhargava, N. Vittal and K.G. Ranga Raju                                                              | 1-91  |
| Recirculation in Flow Over Crum Weirs<br>P. Bettess, W.R. White and R. Bettess                                       | 1-103 |
| Pressure Field over a Rigid Model of an                                                                              |       |
| Inflatable Dam<br>N.M. Hitch and R. Narayanan                                                                        | 1-119 |
| Form Drag Resistance of Two Dimensional Stepped                                                                      |       |
| Steep Open Channels<br>Bahzad M.A. Noori                                                                             | 1-133 |
| Diversion Structure for Purified Wastewater                                                                          |       |
| Across a River<br>F. Valentin                                                                                        | 1-149 |
| The Automatic Throttle Hose. A Flow Regulating<br>Device for Irrigation Turnouts and Storm-water<br>Retention Basins |       |
| F. de Vries                                                                                                          | 1-155 |

| Struct           | ilic Characteristics in a Straight Drop<br>cure of Trapezoidal Cross Section<br>G.C. Noutsopoulos                                       | 1-167 |
|------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------|
| Novel<br>Sedime  | parison of the Performance of Standard and<br>Culvert Designs including the Effects of<br>entation<br><i>T.H. Loveless</i>              | 1-183 |
|                  | l Automatic Gates<br>J. Lewin                                                                                                           | 1-195 |
| Tainte           | Tests on Natural Vibration Modes of a<br>er Gate<br>1. Ishii and E. Naudascher                                                          | 1-209 |
|                  | mensional Analysis of Sloping Submerged                                                                                                 | 1 209 |
|                  | 1.M. El-Khashab                                                                                                                         | 1-223 |
| from S           | ee Years Experience in Sediment Removal<br>Sefid Rud Reservoir by Chasse Method<br>Technical Bureau, Water Affairs,                     |       |
| ٨                | hinistry of Energy, Tehran.                                                                                                             | 1-235 |
|                  | EDIMENT CONTROL FACILITIES FOR HEADWORKS AND NTAKES                                                                                     |       |
|                  | ation Intake from a Steep Gravel Bed River<br>F.G. Charlton and R.W. Benson                                                             | 2-3   |
| Intake<br>4      | entation of Dave Johnston Power Plant<br>e, Glenrock, Wyoming, U.S.A.<br>Abbas A. Fiuzat, Charles E. Sweeney and<br>Peter J.M. Kerssens | 2-15  |
|                  | ution for Sediment Control at Intakes<br>J.G. Whittaker                                                                                 | 2-29  |
| for Di           | Design of Sediment Control Facilities<br>version Headworks in Mountain Streams<br>I.J. Scheuerlein                                      | 2-43  |
| Invest           | Bed Water Intakes: A Laboratory<br>Ligation with Mobile Bed<br>1.G. Maclean, and B.B. Willetts                                          | 2-53  |
| An Imp<br>Cohesi | proved Calculation of the Settlement of<br>onless Grains in Sedimentation Basins<br>Wilhelm Bechteler and Wolfram Schrimpf              | 2-69  |
| Design<br>System | n of the Remodelled Headworks and Canal<br>n for the Greater Mussayib Project<br>M.E. Bramley and G. Thompson                           | 2-85  |
| The In<br>Multip | mprovement of Flow-Distribution to<br>ole Sedimentation Tanks<br>K.H.M. Ali and R. Burrows                                              | 2-105 |

| 3. | CANALS | UNDER | QUASI-STEADY | FLOW | CONDITIONS |
|----|--------|-------|--------------|------|------------|
|    |        |       |              |      |            |

| A Relationship Between Friction Factor and Energy<br>Slope at Incipient Motion of Sediment Particles<br>A. Ramakrishna Rao                                    | 3-3   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Jonglei Structures: Investigations for the<br>Headworks<br>P.A. Kolkman and H.W.R. Perdijk                                                                    | 3-9   |
| Jonglei Structures: Studies, Investigations<br>and Designs                                                                                                    |       |
| W.B. Zimmermann and J.J. van der Zwaard<br>The Response of Aquatic Plant Communities to<br>Changes in the Hydraulic Design of Channels<br>and Channel Systems | 3-23  |
| P.M. Wade                                                                                                                                                     | 3-39  |
| Criterion for Deposition of Sediment<br>Transported in Rigid Boundary Channels<br>A.K. Arora, K.G. Ranga Raju and R.J. Garde                                  | 3-45  |
| 4. FLOOD CONTROL STRUCTURES, FLOOD CONVEYANCE<br>CHANNELS AND METHODS OF BANK PROTECTION                                                                      |       |
| The Use and Performance of Gabions in Large<br>Scale Flood Control Structures<br>Alan D. Crawhurst                                                            | 4-3   |
|                                                                                                                                                               | 4-5   |
| Ice Floods Caused by Wind Action<br>J. Kolodko and B. Jackowski                                                                                               | 4-15  |
| Stage Discharge Relationships for Compound                                                                                                                    |       |
| Channels<br>D.W. Knight, J.D. Demetriou and M.E. Hamed                                                                                                        | 4-21  |
| The Control Structure of the River Medway Flood                                                                                                               |       |
| Relief Scheme<br>K.J. Shave and M.F. Kennard                                                                                                                  | 4-37  |
| Channel Protection, Operation and Maintenance<br>in Flood Alleviation Schemes                                                                                 | 1 50  |
| K.J. Riddell                                                                                                                                                  | 4-53  |
| Frictional Resistance in Channels with Floodplains                                                                                                            | 4-72  |
| W.R.C. Myers                                                                                                                                                  | 4-73  |
| Two-Dimensional Modelling of Dam-Break Floods<br>in Natural Channels with a Movable Bed<br><i>H. Matsutomi</i> , <i>H. Asada and T. Sato</i>                  | 4-89  |
| Washout of Spillway Dams<br>S.P. Chee                                                                                                                         | 4-103 |
|                                                                                                                                                               |       |

| Design of a Hydraulic Control Structure with<br>an In-Spillway Fishpass<br>Lloyd Meloche and John A. McCorquodale                                                | 4-115 |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|
| Dam and Deviation Tunnel for the Control of<br>a Torrent Upstream a Landslide<br>Eugenio Del Felice and Corrado Merizzi                                          | 4-131 |
| Resistance to Flow in Channels with Overbank<br>Flood-Plain Flow<br>J.I. Baird and D.A. Ervine                                                                   |       |
| Flood Prevention Measures for the Valley of the Rio Aguan, Honduras                                                                                              | 4-137 |
| W.R. White, R. Bettess and H.G. Johnson                                                                                                                          | 4-151 |
| 5. COMPUTER SIMULATION OF IRRIGATION AND DRAINAGE<br>CANAL SYSTEMS FOR UNSTEADY FLOW CONDITIONS                                                                  |       |
| Water Movements in a Complex Canal Reach,<br>Computation by a Method of Characteristics,<br>Comparison with Field Measurements<br><i>G. Bertrand and Y. Zech</i> | 5-3   |
| Unsteady Flow Simulation in Complex Drainage<br>Systems by HVM - Hydrograph Volume Method<br>K. Wanka and W. Königer                                             | 5-17  |
| Optimal Operation of an Irrigation Canal System<br>for Unsteady Flow Conditions                                                                                  | 5-33  |
| Unsteady Flow Phenomena in a Drainage Network<br>in the Po River Delta<br>V. Bixio and A. Defina                                                                 | 5-33  |
| The Unsteady Flow in Complex Irrigation<br>Systems with Discharge Control Devices<br>I. Seteanu and M. Erhan                                                     | 5 57  |
| Centralized Control of Irrigation Canal Systems                                                                                                                  |       |
| G. Corriga, S. Sanna and G. Usai<br>Unsteady Behaviour of Dunes                                                                                                  | 2-69  |
| Tetsuro Tsujimoto and Hiroji Nakagawa                                                                                                                            | 5-85  |
| A General Procedure to Compute Channel Systems<br>for Unsteady Flow Conditions<br>J.L. Sanchez Bribiesca and                                                     |       |
| O.A. Fuentes Mariles<br>Flow Study for Operation of a Canal Regulator                                                                                            |       |
| Under Tidal Conditions<br>B.H. Rofe                                                                                                                              |       |
| A Combined Mathematical and Physical Model Approach<br>for the Final Design of the Gambia Barrage                                                                |       |
| H. Bruhl, K. Havnø, J. Dietrich and V. Jacobsen                                                                                                                  | 5-127 |

| 6. SEDIMENT PROBLEMS IN RIVERS AND THE EFFECTS<br>OF ENGINEERING WORKS ON THE REGIME OF RIVERS                          |      |
|-------------------------------------------------------------------------------------------------------------------------|------|
| Problems Related to Important Changes in River<br>Regime Following Intensive River Training Works<br>Martin N.R. Jaeggi | 6-3  |
| The Threshold Between Meandering and Braiding<br>R.I. Ferguson                                                          | 6-15 |
| On the Evaluation of Sediment Transport in<br>Mountain Rivers<br>H. Asada and C. Ishii                                  | 6-31 |
| Estimation of Bedform in Alluvial Channels and<br>Streams by Using Regime-Type Velocity Formulas<br>Sutesaburgo Sugio   | 6-39 |
| Bathymetric Changes Due to Engineering Structures<br>in the Elbe-Estuary<br>W. Puls                                     | 6-55 |