8611970

Abdel-Hafiz, Essam El-Din Aly

SEISMIC ANALYSIS OF FLUID-STRUCTURE SYSTEMS

University of California, Irvine

PH.D. 1986

University Microfilms International 300 N. Zeeb Road, Ann Arbor, MI 48106

Copyright 1986

by

Abdel-Hafiz, Essam El-Din Aly All Rights Reserved

LIST OF CONTENTS

LIST	OF	FIG	GUR	ES		•	٠	•	٠	•	•	•	٠	•	•	•	•	٠	٠	•	•	•	•	•	•	•	•	•	x
LIST	OF	TAI	BLE	S	•	•	•	•	•	•	•	•	•	•	•	•	•		•	•		•	•	•	•	•	•	•	xii
ACKNO	WLI	EDGI	EME	NT		•	٠	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	•	•	٠	xiii
Curri	cu.	Lum	Vi	ta	e	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	xiv
ABSTR	ACT	r .		•	•	•	•	•	•	•	•	•	•	٠	•	•	•		•	٠	•	•	٠	•	•	•	•	•	xv
GENER	AL	IN	rro	DU	C	CI (ON	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	1
Outli	ne	of	th	e	PI	e	ser	nt	St	tu	ły	•	•	•	•	•	•	٠	•	•	•	•	•	•	•	•	•	•	1
Organ	iza	atio	n	of	t	he	e I	Die	384	er	tal	tic	on		•	•												•	3

PART (I)

DYNAMIC ANALYSIS OF DAM-RESERVOIR SYSTEMS

CHAPTER	I. HYDRODYNAMIC PRESSURES ON DAMS	7
I-1.	Introduction	7
I-2.	Dam-Reservoir System	9
I-3.	Assumptions	9
I-4.	Formulation of the Problem	9
	I-4-1. Differential Formulation	1
	I-4-2. Variational Formulation 1	3
I-5.	Numerical Analysis	4
	I-5-1. Boundary Solution Technique 1	6
	I-5-2. Finite Element Formulation	9
	I-5-2-1. Finite Element Idealization 2	0

	I-5-2-2. Evaluation of Stiffness Matrix	21
	I-5-3. Force Vector	21
I-6.	Hydrodynamic Pressure	24
I-7.	Results and Discussion	24
CHAPTER	II. FLUID-STRUCTURE INTERACTION FOR DAM-RESERVOIR	
	SYSTEM	28
II-1.	Introduction	29
11-2.	Free Vibration Analysis	30
	II-2-1. Analytical Solution	30
	II-2-1-1. Structural Model of the Dam	31
	II-2-1-2. Two-Dimensional Shear Beam Theory	31
	II-2-1-3. One-Dimensional Shear Beam Theory	34
	II-2-1-4. Solution of the Equation of Motion	34
	II-2-1-5. Natural Frequencies and Mode Shapes	35
	II-2-2. Numerical Solution	36
	II-2-2-1. Two-Dimensional Shear Beam Theory	37
	II-2-2-2. One-Dimensional Shear Beam Theory	40
	II-2-3. The Eigenvalue Problem	43
	II-2-4. Illustrative Numerical Example	44
11-3.	Dam-Reservoir Interaction for Concrete Gravity Dams	50
	II-3-1. System Under Consideration	51
	II-3-2. Hydrodynamic Pressures	51
	II-3-3. Formulation of the Added Mass Matrix	53
	II-3-4. Illustrative Numerical Example	57
11-4. 1	Dam-Reservoir Interaction for Earth Dams	60

11-5.	Illustrative Numerical Example	64
CHAPTER	III. EARTHQUAKE RESPONSE ANALYSIS OF DAMS UNDER	
	DIFFERENTIAL GROUND MOTION	68
111-1.	Introduction	68
111-2.	Matrix Equation of Motion	72
111-3.	Effective Force Vector	75
	III-3-1. Uniform Ground Motion	75
	III-3-2. Non-Uniform Ground Motion	76
	III-3-2-1. Variable-amplitude In-phase	
	Ground Motion	76
	III-3-2-1. Phased Ground Motion	77
111-4.	The Method of Mode Superposition	79
111-5.	Calculation of Shear Stresses	80
111-6.	Computer Implementation	82
111-7.	Illustrative Numerical Example	84
	REFERENCES	99
	APPENDIX (1.1). LIST OF SYMBOLS	103

PART (II)

FLUID-TANK-FOUNDATION INTERACTION UNDER VERTICAL GROUND EXCITATION

CHAPTER IV. A SIMPLIFIED ANALYSIS OF A SHELL-LIQUID-SOIL

	SYSTEM	UNDERGOING	VERTICAL	VIBRATIONS	•	• ;	• •	2 . 94	. 109
IV-1.	Introduction				•	• •	• •	•	. 110
IV-2.	Tank Geometry	and Coord	Inate Syst	tem		•			. 112

IV-3.	Assumptions
IV-4.	Equations of Motion
	IV-4-1. Equation of Motion of the Shell 114
	IV-4-2. Equation of Motion of Tank Base 115
1V-5.	Representation of the Soil
IV-6.	Hydrodynamic Pressure
IV-7.	Generalized Equations of Motion
IV-8.	Solution of the Equations of Motion
IV-9.	Models Under Consideration
	IV-9-1. Response of Tank on a Rigid Soil to
	a Step Function
	IV-9-2. Earthquake Response of Tanks on
	a Flexible Foundation Soil 128
	IV-9-3. Effect of Soil Parameters on Tank Response . 130
	IV-9-4. Effect of Base Thickness on Tank Response 132
	IV-9-5. Effect of Height-to-Radius Ratio on
	Tank Response
IV-10.	Frequency-Dependent Solution
	IV-10-1. Formulation of the Problem 136
	IV-10-2. Solution for Tanks on Rigid Foundation Soil 138
	Illustrative Numerical Example
CHAPTER	R V. DYNAMIC PROPERTIES OF A SHELL-LIQUID-SOIL SYSTEM
	UNDERGOING VERTICAL VIBRATIONS
V-1.	Tank Geometry and Coordinate System
V-2.	Procedure for Evaluation of the Solution 151

V-3.	Stiffness	Matrix of Axisymmetric Shell 151
	V-3-1.	Idealization of the Shell
	V-3-2.	Displacement Functions 153
	V-3-3.	Relationships between Strains and
		Nodal Displacements 155
	V-3-4.	Relationships between Stresses and
		Nodal Displacements 156
	₩-3-5.	Element Stiffness Matrix 158
V-4.	Stiffness	Matrix of Base Plate
	V-4-1.	Idealization of the Base Plate 160
	V-4-2.	Displacement Functions
	V-4-3.	Relationships between Strains and
		Nodal Displacements
	V-4-4.	Relationships between Stresses and
		Nodal Displacements
	V-4-5.	Element Stiffness Matrix
V-5.	Stiffness	Matrix of an Axisymmetric Solid Element 166
	V-5-1.	Idealization of the Axisymmetric Solid Element 166
	V-5-2.	Displacement Functions
	V-5-3.	Relationships between Strains and
		Nodal Displacements
	V-5-4.	Relationships between Stresses and
		Nodal Displacements
	V-5-5.	Element Stiffness Matrix
W-6	Fralustia	- of the Chell Mana Materia

V-7. Evaluation of the Base Plate Mass Matrix 175
V-8. Evaluation of the Mass Matrix of Axisymmetric
Solid Element
V-9. Illustrative Numerical Examples
V-9-1. Natural Frequencies of Liquid Storage Tanks . 180
V-9-2. Natural Frequencies of Rigid Circular Plates . 181
V-9-3. Natural Frequencies of Circular Plates
on Elastic Foundation
V-9-3-1. Rigid Circular Plates on
Elastic Foundation
V-9-3-2. Flexible Circular Plates on
Elastic Foundation
CHAPTER VI. LIQUID EFFECTS IN STORAGE TANKS UNDERGOING VERTICAL
EXCITATIONS WITH SOIL-STRUCTURE INTERACTION 188
VI-1. Tank Geometry and Coordinate System
VI-2. Hydrodynamic Pressures
VI-3. Formulation of the Added Mass
VI-4. Derivation of the Added Mass Matrix
VI-5. Formulation of the Added Mass Matrix 195
VI-5-1. The Mass Matrix [AM ₁₁]
VI-5-2. The Mass Matrix [AM22]
VI-5-3. The Coupling Mass Matrix [AM ₁₂] 200
VI-5-4. The Coupling Mass Matrix [AM ₂₁] 202

viii

CHAPTER VII. AXISYMMETRIC FREE VIBRATION ANALYSIS OF

VII-1.	Types of Vibrational Modes 207
VII-2.	The Eigenvalue Problem
VII-3.	Computer Implementation
VII-4.	Illustrative Numerical Examples 209
VII-5.	Tank-Liquid-Foundation Interaction 209
VII-6.	Effect of Side Length 209
VII-7.	Effect of Soil Stiffness
VII-8.	Response of Tank-Soil System to Vertical

Base Exc	itation	
VII-8-1.	Matrix Equation of Motion 214	
VII-8-2.	Effective Force Vector	
VII-8-3.	The Method of Mode Superposition 217	
VII-8-4.	Illustrative Numerical Example 218	
test (paper, sporting)	REFERENCES	
APPENDIX (2.1).	PLATE STIFFNESS MATRIX	
APPENDIX (2.2).	ELEMENTS OF MATRIX	
APPENDIX (2.3).	LIST OF SYMBOLS	

APPENDIX (2.4). FLOW CHART FOR MAIN PROGRAM PH50 . . . 240

APPENDIX (2.5). FLOW CHART FOR MAIN PROGRAM INTACT . . 244