Additional tables for the hydraulic design of pipes, sewers and channels

D. I. H. Barr and HR Wallingford

Contents

INTRODUCTION The Wallingford Charts and the Wallingford Tables The Additional Tables	1
REVIEW OF HYDRAULIC RESISTANCE The Colebrook-White equation Simplified forms of the Colebrook-White equation Tables of Colebrook-White solutions (tables WT1-WT33 and A34 The linear measure of surface roughness	1 4-A48)
DESIGN OF CIRCULAR SECTION PIPELINES AND SEWERS Use of the Tables Interpolation between entries Tables of proportioning exponents (Table sequence B) Solution using proportioning exponents Multiplying factors on tabulated discharges for standard but tabulated diameters Perimeters involving dissimilar roughness	7 t non-
NON-CIRCULAR CROSS-SECTIONS OF FLOW Calculation of discharge and velocity in part-full circular pipes Calculation of depth in part-full circular pipes Hydraulic equivalence 'Unit size' measures for shapes of conduits and channels Tables of properties of unit sections (Table sequence C) Finding discharge in a rectangular open channel	11
SOLUTIONS FOR EGG-SHAPE SEWER Finding (i) discharge, or (ii) gradient, or (iii) size where propor depth is stipulated Finding depth of flow in a conduit of specified boundary shape size, with discharge, gradient and roughness size fixed	
SOLUTIONS FOR TRAPEZOIDAL OPEN CHANNEL	18
OTHER SOURCES OF RESISTANCE	20
CHECKS ON MEAN VELOCITY, REYNOLDS NUMBER AND FROUDE NUMBER	21
VISCOSITIES OTHER THAN THAT OF WATER AT 15°C	21
THE MANNING EQUATION Arrangement in terms of equivalent diameter Parallel solutions of key examples	22
CRITICAL DEPTH AND CRITICAL DISCHARGE	23
GRADUALLY VARIED FLOW IN PRISMATIC CHANNELS Solution for gradually varied flow in a trapezoidal channel	24

REVIEW

References

Nomenclature

Tables within text

Table 1: Overall solution paths for uniform flow problems

Table 2: Values of multiplying factor for SU Colebrook-White equations Table 3: Predictions of proportional depth in Form 1 egg-shape with range of extreme combinations of conditions

Table 4: Computation of M1 flow profile in trapezoidal channel

Figures within text

Fig. 1: Colebrook-White equation and direct solution approximations Fig. 2: Solution of Colebrook-White equation in simplified usage mode (SU)

Fig. 3: Solution routes for uniform flow in non-circular cross-sections

Appendix 1: Recommended roughness values

Appendix 2: Typical values of Manning roughness coefficient n

Appendix 3: Velocity correction for variation in temperature

Appendix 4: Multiplying factors for discharges in pipes and lined tunnels

Table sequence A

Tables of Colebrook-White solutions Diameters 2.400 m to 20.00 m

> Table A34: $k_s = 0.015 \text{ mm}$ Table A35: $k_s = 0.030 \text{ mm}$ Table A36: $k_s = 0.060 \text{ mm}$ Table A37: $k_s = 0.150 \text{ mm}$ Table A38: $k_s = 0.30 \text{ mm}$ Table A39: $k_s = 0.60 \text{ mm}$ Table A40: $k_s = 1.50 \text{ mm}$ Table A40: $k_s = 3.00 \text{ mm}$ Table A42: $k_s = 6.00 \text{ mm}$ Table A43: $k_s = 15.0 \text{ mm}$ Table A44: $k_s = 30.0 \text{ mm}$ Table A45: $k_s = 60.0 \text{ mm}$ Table A46: $k_s = 150 \text{ mm}$ Table A46: $k_s = 300 \text{ mm}$ Table A48: $k_s = 600 \text{ mm}$

Table sequence B

Values of proportioning exponents in equations (8), (9) and (10)

Table B1: Values of exponent x Table B2: Values of exponent y