SOFT SOIL PROPERTIES AND TESTING METHODS

L.S.AMARYAN

Translated from Russian and edited by R.B.ZEIDLER H*T*S, Gdańsk

A.A. BALKEMA / ROTTERDAM / BROOKFIELD / 1993

Contents

PREFACE	IX
1 SOFT ORGANOMINERAL SOILS 1.1 Varieties of soft organomineral soils 1.2 Classification of soft soils	 RESULTS OF TRIAXLAL TESTS 6.1 Variation of pote whice pressure 6.2 Famile of complex united tests
 1.3 Engineering-geological properties of sit 1.4 General requirements imposed on engi 	tes with soft organomineral soils 8 neering-geological
investigations of soft soils	bas mode to goilating leather 1.15
2 LABORATORY TECHNIQUES AND AP 2.1 Measurement of water and bound water	PARATUS FOR SOFT SOILS 21 er contents by mechanical
dehydration in thin layers	21
2.2 Determination of particle density at his	gh pressures 23
2.3 Shear and deformation tests	25
2.4 Complex triaxial tests of core specimen2.5 Determination of permeability and structure	s 27 actural parameters of peat
under consolidation	30
2.6 Cone penetration and vane shear tests	of soft soil samples 32
2.7 Formulae for soft soil properties	135 HYRICOMICHANICAL PROPI
3 TECHNIQUES OF FIELD STUDIES FO	R SOFT SOILS 39
3.1 Soil sampling	39
3.2 Field vane shear tests	41
3.3 Deformation and shear testing of soil b	y pressure blade apparatus 43
3.4 Static probing by portable field penetro	ometers 47
3.5 Lightweight probing and boring equipn	nent for complex
investigations of soft softs	DOTATING TO SHOTTADITES VIA 49
3.0 measurement of pore water pressure in	i son son an ao northeortho 51
4 UNIAXIAL COMPRESSION TESTS ON	SOFT SOIL 55
4.1 Physical background of uniaxial compre-	ession of soft soil 55

11 Defi ten propositio una territo interna	
4.2 Substantiation of uniaxial consolidation law for organomineral soils	58
4.3 Results of peat compression tests	62
4.4 Compression tests on sapropels	65
4.5 Results of compression tests of marine muds	67
4.6 General parameters of uniaxial consolidation of organomineral soils	72
5 RESULTS OF LABORATORY SHEAR TESTS	74
5.1 General features of the variation of soft soil strength	74
5.2 Shear strength tests of peat soil	78
5.3 Investigations of the strength of frozen peat	80
5.4 Shear strength tests of sapropels	82
5.5 Shear tests of marine mud	84
6 RESULTS OF TRIAXIAL TESTS OF PEAT SOILS	89
61 Variation of pore water pressure	89
6.2 Results of complex triaxial tests of large-size peat specimens	94
7 INVESTIGATIONS OF PHYSICOMECHANICAL PROPERTIES	D.L.
AND COMPOSITION OF NATURAL PEAT	99
7.1 Vertical variation of shear and cone penetration strength	99
7.2 Macrostructural properties of peat fields and peat stratification	102
7.3 Recommendations on general bearing capacity and stability	5.4 1 1
of peat fields	104
7.4 Statistical analysis of shear and cone penetration tests	112
7.5 Field investigations of peat strata by static loading	113
7.6 Investigations of peat settlement under fills	117
7.7 General data on shear strength of peat strata	124
7.8 Seismoacoustic investigations of mechanical properties of peat soils	125
7.9 Variation of peat properties during freezing	131
8 PHYSICOMECHANICAL PROPERTIES AND COMPOSITION	
OF NATURAL SAPROPEL	137
8.1 Selection of field investigation sites	137
8.2 Experimental justification of core sampling	139
8.3 Shear strength and cone penetration tests in natural sapropels	141
8.4 Field testing of sapropel composition and condition	144
8.5 Correlations between physicomechanical properties of sapropels	150
9 INVESTIGATIONS OF PHYSICOMECHANICAL PROPERTIES AN	D
COMPOSITION OF NATURAL MARINE MUD	154
9.1 Geological-engineering properties of marine muds	154
9.2 Experimental investigations of the vertical variability of	
physicomechanical properties of marine muds	160

VI Soft soil properties and testing methods

-

1

9.3 Results of blade pressuremeter tests of marine muds of Dneper-	Bug
liman	164
9.4 Complex experimental investigations of marine muds at Temryuk	
harbour	169
9.5 Characteristic consolidation properties of marine muds under	
sand fills	174
REFERENCES	179

and some on the second seco

rand. This provide the backeting is not subscripting the result, supported to the provident of parts in characteristic and by the provider in the solid phase of a straightlik composition, a high degree of subtration and compressibility, the proteins of straightlik composition bunds, less thereafty and low beating conactive.

Taking into account the increasing restance of engineers a construction in this with ergentants and testimore, and their stillisation at deposits of solid over parterials, the Acobe chas formulated his goal as an platforation of a unique methodolopent and technical background for trainernal exploration of structural mechanical and hydrocrimical properties and compto thes of each solid, together with excluding ment of theoretical background for trainernal exploration of structural mechanical and hydrocrimical properties and compto thes of each solid, together with excluding ment of theoretical information and printical recommendations for prediction of the behaviour of each solid under barding, at devotering, and the in other effects. The volution of the task one been possible betavity predicts application of the Author's exploring in the formulation and extensions of the menory years of the properties of with organization of doing with relations of special toglod preler comparediction of the transmission condition under varying load. This block densites the original methods and technical measures of training and wells in information for comparediction of the transmission condition under varying load. This block densiber comparediction of the transmission condition under varying load. This block densites the original methods and technical measures of training and wells in information and field together with classification cristing and wells in information and field together with classification cristing and wells in information and field together with classification cristing and different relationships ended and field together with classification cristing and different relationships watch and field together with classification cristing and different relationships watch and direct is the Author and by associates.

Since this work provides an element ordering or recommendations, the theory techniques and the principles of operation of the measuring top-ratio have been given in a concentral form. Generally known, or standard, we have not opprove are not considered. References are only given on such factor.

Physicons chanical properties of organomenet soils are discussed from This has been possible in the water of the design of the special measurer and techning as of investigation, including static profiling, while these faces, place pressurements tests trapping of large-size core spectrosets, and termy other laboratory tests.

Use is made of the appropriate automited minimized by the Author without