BUILDING ON SOFT SOILS

Design and construction of earthstructures both on and into highly compressible subsoils of low bearing capacity

A.A.BALKEMA/ROTTERDAM/BROOKFIELD/1996

Contents

PREFACE	XI
SUMMARY	XIII
SYMBOLS	XV
1 EARTH STRUCTURES ON AND IN LOW BEARING CAPACITY AND HIGHLY	
COMPRESSIBLE SUBSOILS	1
1.1 Introduction	1
1.2 Low bearing capacity and highly compressible subsoil	1
1.3 Earth structures	3
1.4 Geotechnical mechanisms	
1.5 Earth structures and geotechnical mechanisms	12
2 THE DESIGN PROCESS	13
2.1 Introduction	13
2.2 Design philosophy	13
2.3 Description of the design process	15
2.3.1 Stages in the design process	15
2.3.2 Information flows during the design process	21
2.3.3 Geotechnical survey and calculation methods	22
2.4 Quality control	22
2.4.1 Design and construction	24
3 PROBABILISTIC SAFETY ANALYSIS	28
3.1 Introduction	28
3.2 General safety philosophy	28
3.2.1 Deterministic and probabilistic methods	29
3.2.2 System of partial factors	32
3.2.3 Determination of partial factors	34
3.3 Determination of the characteristic value	35
3.4 Safety level and reliability indices	39
3.4.1 Proposed reliability indices	39
3.4.2 Reliability Index per mechanism	41
3.4.3 Length factor	41
3.5 Building stage	42
3.6 Partial factors in practice	43
3.6.1 Model and material factors	44
3.6.2 Practical instructions	46

VI Building on soft soils

,	4 S	OIL INVESTIGATION	4
	4.	1 Introduction	4
	4.	2 Use of archive material and maps	4:
	4.	3 Determination of soil structure	4:
		4.3.1 Geophysical measurements	50
		4.3.2 Cone penetration tests	5
		4.3.3 Borings	53
		4.3.4 Investigation costs	53
		4.3.5 Schematisation	54
	4.	4 Measurement of groundwater levels and piezometric levels	54
	4	5 Sampling	57
	4.0	6 Determination of calculation parameters	60
		4.6.1 Methods of determination	61
		4.6.2 Unit weight and water content	66
		4.6.3 Strength	67
		4.6.4 Deformation	69
		4.6.5 Permeability and consolidation behaviour	72
	4.7	7 Approach to soil investigation	73
		4.7.1 Starting points	74
		4.7.2 Sequence	75
		4.7.3 Type and intensity	76
		4.7.4 Geostatistics	77
		4.7.5 Relative costs	78
	4.8	Presentation of the results	78
5	ST	RESSES AND DEFORMATIONS	00
70)		Introduction	80
		Calculation of the unit weight	80
	5.3	Stresses	80
		5.3.1 Initial stresses	83
		5.3.2 Increase in stress	83
	5.4	Stress deformation behaviour; analysis and calculation	84
		5.4.1 Micro-scale behaviour	85
		5.4.2 Approximation of the deformation behaviour	85
		5.4.3 Approximation of the collapse behaviour	86 87
		5.4.4 Elastoplastic models	89
		5.4.5 Approach to the calculation of deformation and stability	91
	5.5	Phenomena and mechanisms	94
		5.5.1 Stress deformation relationship	94
		5.5.2 Consolidation	95
		5.5.3 Settlement	96
		5.5.4 Failure	97
	5.6	Calculation method for determination of stress distribution	98
		5.6.1 Formulae	99
		5.6.2 Graphs and tables	99
		5.6.3 Computer programs	99
	5.7	Calculation methods for determination of settlement	99
		5.7.1 Anglo-Saxon method	100
		5.7.2 Dutch method	102
		5.7.3 'Fokkens' method	105

			Contents	VII
	5.8 Calculation m	nethods for calculating consolidation		105
	5.8.1 One-dir	mensional consolidation		106
	5.8.2 Two-dir	mensional consolidation		109
	5.9 Calculation m	ethods to determine overall stability		109
	5.9.1 Shearin	g along a slip surface		110
	5.9.2 Three-d	limensional effects		118
	5.9.3 Stability	y during construction		119
	5.9.4 Relation	n between excavation depth and slope angle		120
	5.9.5 Vertical	equilibrium and uplift		123
	5.9.6 Squeezi	ing		124
	5.10 Calculation	methods to determine forces on piles		127
	5.10.1 Piles	under horizontal load from moving soil		128
	5.10.2 Nega	ative skin friction		129
	5.11 Aspects of d	ynamics		130
6	FILL MATERIAL	.s		134
	6.1 Introduction			134
	6.2 Primary mater	rials		136
	6.2.1 Sand			140
	6.2.2 Clay for	rfills		142
	6.2.3 Clay as	cover layer		143
	6.2.4 Loam			146
	6.2.5 Boulder	rclay		147
	6.3 Secondary ma	iterials		148
	6.3.1 Eurocla	y		149
	6.3.2 Granula	ites		150
	6.3.3 Screen s	sand		151
	6.3.4 Refuse i	incineration plant slags (AVI slags)		152
	6.3.5 Aerated	slags		153
	6.4 Lightweight n	naterials		153
	6.4.1 Volcani	c tuff sand ('Flugsand')		154
		materials of vegetable origin		155
	6.4.3 PS-rigio			155
	6.4.4 Aerated	concrete		158
	6.4.5 Expand	ed clay solid particles		160
7	CONSTRUCTION	NMETHODS		161
	7.1 Introduction			161
	7.2 The constructi	ion of earth fills		161
	7.2.1 Phased	filling		161
	7.2.2 Displac	ing		163
	7.2.3 Cunette	s		164
	7.2.4 Shoulde	ers		165
	7.3 Techniques fo	r accelerating consolidation		165
	7.3.1 Horizon			165
	7.3.2 Vertical			166
		consolidation		172
		r limiting deformations		176
		is formed in the ground		176
	7.4.2 Load rel			186
	7.4.3 Geosynt			187
	7 4 4 Painford			104

VIII Building on soft soils

7.5	5 Comparison of construction methods	195
	7.5.1 List of variants and calculations	195
	7.5.2 Multi criteria analysis	198
	7.5.3 Cost of variants	199
	7.5.4 Weighing of variants	200
	7.5.5 Example	200
8 CC	ONSTRUCTION	203
8.1	Introduction	203
8.2	2 Earth moving	203
	8.2.1 Excavation	204
	8.2.2 Transport	204
	8.2.3 Filling	204
	8.2.4 Finishing	205
	8.2.5 Bulking	205
8.3	3 Construction monitoring	207
	8.3.1 Construction rate	207
	8.3.2 Measurement during construction	208
	8.3.3 Deformation measurement equipment	208
	8.3.4 Planned measurement programme	215
	8.3.5 Division of tasks	217
	8.3.6 Interpretation of water pressure measurements	217
	8.3.7 Settlement control	220
	8.3.8 Stability control	220
	8.3.9 Corrective measures	229
84	Cases of damage	231
0.1	8.4.1 Assessment of construction damage	231
	8.4.2 Damage when constructing a dyke	235
	8.4.3 Damage when constructing a toyle 8.4.3 Damage when constructing a noise barrier	237
	8.4.4 Damage with site excavation	239
9 MA	AINTENANCE AND MANAGEMENT ASPECTS	242
9.1	Introduction	242
	Place of management in the design process	242
	Design types and maintenance plan	245
	Influence on the design	247
	Financing	250
APPE	ENDIX A: CORRELATIONS	253
A1	Determining unit weight and water content via correlations	254
	A1.1 Interrelationship between unit weight and water content	254
	A1.2 Unit weight and water content based on soil type classification	254
A2	Determination of strength parameters via correlations	257
	A2.1 Strength parameters based on normal cone penetration tests	257
	A2.2 Strength parameters from friction cone tests	258
	A2.3 Strength parameters based on piezocone tests	259
	A2.4 Strength parameters based on pressure meter tests	259
	A2.5 Strength parameters based on Atterberg consistency limits	259
	A2.6 Strength parameters based on consistency	261
	A2.7 Strength parameters based on hardness classification	261
A3	Determination of deformation parameters via correlations	262
	A3.1 Interrelationship between deformation parameters	263

A3.3 Deformation parameters based on normal static cone penetration tests	68 72 75
A 3 3 Deformation parameters based on normal static cone penetration tests 27	72 75
A3.3 Deformation parameters based on normal static cone penetration tests	75
27	
A 3.4 Delotination parameters subsequently	16
A 1 1 Delottiation parameters oused on the receivers in the	76
	10
A5 Determination of the 'low bearing capacity and highly compressible' concept via correlations 27	78
correlations	100
APPENDIA B. CHECKING OF COM OTERSON I WHEE	80
B1 IIIII Oddetion	80
B2 Exact solutions	81
DZ.1 Sitess distribution	81
B2.2 Total settlements	83
D2.5 Settlement as a rather of this	83
D2.4 One difficultivities conservation	84
	85
DZ.0 Macrostacine	86
B2.7 Squeezing	88
B3 Representative geometries and parameters 28	89
	89
DJ.L Glope Recilientes	91
B3.3 Parameters for basic and slope geometries	93
B4 Calculations based on analytical principles	95
	95
Die Tomostionen	95
D4.5 Bettlement as a tanonon of anno	95
D4.4 One difficusional consolidation	96
D4.5 Macrostability	96
	98
DJ.1 David and to all the	98
DJ.2 One differential constitution	99
DS.5 1 WO difficultive consolitation	00
B5.4 Macrostability 30	00
APPENDIX C: VALIDATION OF CALCULATION METHODS 30	01
	01
	01
	01
C2.2 Design profile	01
C2.3 Validation calculations 30	02
	04
C3.1 Project description 30	04
C3.2 Geotechnical investigation 30	05
C3.3 Schematisation of the geotechnical profile	06
C3.4 Analytical validation calculation	07
C3.5 Validation calculation by a finite-element method 30	07
C3.6 Validation assessment 30	08
C4 Recommendations arising from the validation 30	09

X Building on soft soils

APPENDIX D: PRI	EDICTION AND MEASUREMENT OF SETTLEMENTS AND I	PORE
WATER PRESSUR		310
D1 Settlement ar	nd water pressure prediction	310
D2 Interpreting s	settlement plate and piezometer readings	313
APPENDIX E: 'ST	ATE OF THE ART' ON THE MECHANICAL BEHAVIOUR OF	CLAY
AND PEAT		317
E1 Introduction	1 2 2	317
E2 Behaviour inc	lependent of time	317
	ni one-dimensional formula	318
E2.2 Large d		319
E2.3 Unique	correlation between specific volume and vertical stress	320
E2.4 Multi-d	imensional behaviour; the Cam-clay model	323
E2.5 K ₀ -valu	e	329
E3 Time-depende	ent behaviour	329
E3.1 One-dir	nensional creep	329
E3.2 Ageing		331
E3.3 Phased		331
E3.4 'Koppej	an' method	332
	imensional creep	333
E3.6 Consoli	dation	338
E4 Anisotropy		339
E5 The finite-eler	nent method	340
E6 SHANSEP an	d the simple shear-apparatus	341
E6.1 SHANS		341
E6.2 Simple s	shear-apparatus	343
E7 Peat classificat		345
E7.1 Relation	ship between classification properties and mechanical properties	345
E7.2 Classific	ation parameters to be determined	346
E7.3 Standard	Is and methods	346
E8 Aspects requir	ing further investigation	349
APPENDIX F: EXA	MPLES OF MANUAL CALCULATIONS	351
F1 Settlements		351
F1.1 Graphica	al settlement calculation using the 'Koppejan' method	351
F2 Macrostability		353
F2.1 Stability	calculation using straight slip surfaces	353
	calculation with circular slip surfaces	356
F2.3 Stability	calculation with random slip surfaces	360
PPENDIX G: REF	ERENCES	365
LOSSARY WITH I	PAGE REFERENCES	381
DVERTISEMENT	S	389