Mohr Circles, Stress Paths and Geotechnics

R.H.G. Parry

ISSMFE c/o University Engineering Department Cambridge UK

E & FN SPON An Imprint of Chapman & Hall London · Glasgow · Weinheim · New York · Tokyo · Melbourne · Madras

Contents

Pr	reface	IX
Н	istorical note	x
W	Vorked examples	xiv
1	Stresses, strains and Mohr circles	1
	1.1 The concept of stress	1
	1.2 Simple axial stress	1
	1.3 Biaxial stress	4
	1.4 Mohr stress circle	10
	1.5 Mohr circles for simple two-dimensional stress systems	12
	1.6 Three-dimensional stress	14
	1.7 Direct shear and simple shear	20
	1.8 Triaxial stress	23
	1.9 Pole points	25
	1.10 Basic failure criteria	28
	1.11 Effective stress and stress history	30
	1.12 Mohr strain circle	32
	1.13 Angle of dilatancy	34
2	Failure states in soil	38
	2.1 Total and effective stress circles	38
	2.2 The triaxial test	38
	2.3 Triaxial compression tests	43
	2.4 Triaxial extension tests	60
	2.5 Influence of initial stress and structural anisotropy on strength of clays	64
	2.6 Orientation of rupture planes in clays	67
	2.7 Influence of dilatancy on ϕ' for sands	68
3	Failure in rock	72
	3.1 The nature of rock	72
	3.2 Intrinsic strength curve	72

		00.5			100
(01	αŝ	0	11	ts.

	33	Griffith crack theory	72
		Empirical strength criteria for rock masses	74
		Empirical strength criteria for intact rock	76
		Strength of rock joints	81
		Influence of discontinuities in laboratory test specimens	86
4		plied laboratory stress paths	96
		Mohr circles, stresses and stress paths	96
		Consolidation stresses and stress paths	101
		Drained triaxial stress paths	109
		Influence of stress path on laboratory-measured drained strengths	112
		Undrained triaxial stress paths	115
		Influence of stress paths on laboratory-measured undrained strengths	118
		Relative short-term and long-term field strengths	120
	4.8	Infinite slope stress path	122
5	Ela	stic stress paths	126
		Isotropic soil and soft rock	126
		Undrained triaxial tests on anisotropic soil or soft rock	130
		Observed effective stress paths for undrained triaxial tests	131
	TL		
6		use of stress discontinuities in undrained plasticity calculations	141
		Lower bound undrained solutions	141
		Smooth retaining wall	141
		Stress discontinuity	142
		Earth pressure on a rough retaining wall	144
		Foundation with smooth base	149
	6.6	Undrained flow between rough parallel platens	155
7	The	use of stress discontinuities in drained plasticity calculations	159
	7.1	Lower bound drained solutions	159
	7.2	Smooth retaining wall	159
	7.3	Effective stress discontinuity	162
		Active earth pressure on a rough retaining wall	166
		Passive earth pressure on a rough retaining wall	167
		Smooth foundation on cohesionless soil (ϕ' , $c'=0$)	172
		Silo problem	179
e	St.	ass characteristics and slip lines	107
0		ess characteristics and slip lines Stress characteristics	187
			187
	8.2		187
		Drained stress characteristics	201
	0.4	Ranking limiting stress states	2.08

vi

Contents	vii
8.5 Slip lines 8.6 Undrained deformation	210 213
Appendix Symbols	218
References	223
Index	227