

Engineering for Embankment Dams

BHARAT SINGH

R.S. VARSHNEY

With Contributions by B.G. Verghese, M.C. Goel and Ram Pal Singh

Edited by BHARAT SINGH

A.A. BALKEMA/ROTTERDAM/BROOKFIELD/1995

Contents

1.		DESIGN CONSIDERATIONS	
	1.1	Introduction: Historical Development	1
	1.1	Future Prospects	3
	1.3	Selection of Dam Site	4
	1.4	Choice of Type of Dam	8
	1.5	Classification of Embankment Dams	11
	1.6	Criteria for Safe Design of Embankment Dams	13
	1.7	Typical Sections	15
	1.8	Layout of Dam and Appurtenances	16
	1.9	Freeboard	17
	1.10	Crest Width	20
	1.11	Slope Protection	21
	1.12	Protection of Upstream Slope	21
	1.13	Protection of Downstream Slope	26
	1.14	Development of Surface Water Resources in India	26
2.	FOUN	IDATION EXPLORATION FOR EARTH AND ROCKFILL	
	DAMS	S AND TREATMENT OF ROCK FOUNDATIONS	29
	2.1	Foundation Investigations	29
	2.2	Geophysical Methods of Subsurface Exploration	34
	2.3	In-situ Measurements	40
	2.4	Use of Rock Parameters to Decide Type of Dam	47
	2.5	Laboratory Tests	48
	2.6	Criteria for Acceptability of Foundation Rock Surface	48
	2.7	Foundation Excavation: Jointed and Weak Foundations	50
	2.8	Dams on Fault Zones	51
	2.9	Core Contact Treatment	66
	2.10	Drainage	69
	2.11	Grouting	70
	2.12	Dams on Karstic Foundations	84
3.	SEEP	AGE THEORY	88
	3.1	Fundamentals of Seepage Flow	88
	3.2	Permeability	91
	3.3	Laplacian Equation and Flow Net	95

	3.4	Determination of Free Surface and Discharge Through	
		Dam	101
	3.5	Anisotropic Seepage	110
	3.6	Flow Net for Earth Dam Under Steady Seepage Condition	
	3.7	Top Flow Line in Slanting Cores	116
	3.8	Methods Commonly Available for Drawing Flow Nets	118
	3.9	Seepage Force and Its Effects	121
4.	CONT	ROL OF SEEPAGE THROUGH EMBANKMENT DAMS	132
	4.1	Adverse Effect of Seepage	132
	4.2	Methods of Seepage Control	133
	4.3	Core	133
	4.4	Drainage of Embankments	155
	4.5	Design of Transition Filter	161
	4.6	Use of Geotextiles as Filter Material	170
5.	TREAT	MENT OF FOUNDATIONS FOR EMBANKMENT DAMS	177
	5.1	Rock Foundations	177
	5.2	Alluvial Foundations	177
	5.3	Pervious Foundations	177
	5.4	Seepage Curtailment	178
	5.5	Upstream Impervious Blanket	195
	5.6	Foundations of Clayey Soils	203
	5.7	Downstream Drainage of Foundations	207 217
	5.8 5.9		219
~		Treatment of Sandy Deposits Susceptible to Liquefaction	
6.			223
	6.1	Introduction—Hydraulic Fracturing	223
	6.2	Some Instructive Case Studies	224
	6.3	Causes of Cracking	228
	6.4	Laboratory Studies on Cracking Potential	237 237
	6.5 6.6	Influence of Soil Type Finite Element Analysis	239
	6.7	Hydraulic Facturing	241
	6.8	Preventive and Remedial Measures	249
	6.9	Dispersive Soils	249
7.		R STRENGTH OF SOILS	254
	7.1	Introduction	254
	7.2	Stresses on a Plane	254
	7.3	Nature of Shear Strength of Soils	256
	7.4	Mohr Strength Theory	258
	7.5	Shear Testing of Soils	260
	76	Shear Characteristics of Non-cohesive Soils	263

Х

	7.7 7.8 7.9 7.10	Shearing Strength of Rockfill Material Shear Strength of Cohesive Soils Shearing Strength of Compacted Clays Dynamic Strength of Cohesive Soils	271 276 281 284
8.	CRITICAL STAGES AND PORE PRESSURES IN EARTH DAMS 287		
	8.1 8.2 8.3 8.4	Critical Stages End of Construction Condition Steady Seepage Pore Pressures Rapid Drawdown Condition	287 288 308 310
9.	STABI	LITY ANALYSIS—THE LIMIT-EQUILIBRIUM APPROACH	328
	9.1 9.2 9.3 9.4 9.5 9.6 9.7	Introduction Effective and Total Stress Approach Shape of the Slip Surface Method of Slices Graphic Methods Location of the Critical Circle Wedge Analysis	328 329 330 330 342 346 346
10.	FINITE	E-ELEMENT METHOD OF STABILITY ANALYSIS	362
	10.1 10.2 10.3 10.4 10.5 10.6	Introduction The Method Material Non-linearity Constitutive Laws Analysis of Dams by Finite-Element Method Three-dimensional Analysis	362 363 367 372 374 384
11.	STABILITY DURING EARTHQUAKES 39		394
	11.1 11.2 11.3 11.4 11.5	Introduction Recorded Damages and Failures Types of Damage or Failure Earthquakes Response Analysis of Embankment Dams	394 394 398 398 407
	11.6	Finite-Element Approach	419
	11.7	Development of Deformation Analysis	421
	11.8 11.9 11.10	Summary and Design Recommendation Indian Standard for Earthquake-Resistant Design Other Precautions	429 431 432
12.	ROCK	FILL DAMS	439
	12.1 12.2 12.3	Introduction General Characteristics of Rockfill Dams Material for Rockfill Dams	439 444 447
	12.4	Testing of Rockfill Material	448

xi

xii

	12.5	Foundations of Rockfill Dams	451
	12.6	Design of Dam Section	452
	12.7	Membrane or Facing	456
	12.8	Rubble Cushion or Zone of Selected, Compacted Material	
		Behind the Membrane	461
	12.9	Rockfill Placement	462
		Examples of Modern Concrete-faced Rockfill Dams	463
		Deformation of Rockfill Dams	469
		Flow Through and Over Rockfill Dams	477
		Underwater Placement	478
13.		ITY CONTROL IN CONSTRUCTION OF EMBANK-	
	MENT	S-MONITORING OF POST-CONSTRUCTION	
	BEHA	VIOUR	482
	PART	I: QUALITY CONTROL	
	13.1	General	482
	13.2	Borrow Aera Control	483
	13.3	Compaction of Cohesive Soils	485
	13.4	Mechanics of Compaction of Soils	489
	13.5	Influence of Method of Compaction	489
	13.6	Mechanics of Compaction of Cohesionless Soils	491
	13.7	Compaction in the Field: Cohesive Soils	491
	13.8	Compaction of Non-cohesive Soils	495
	13.9	Control of Compaction	497
	13.10	Placement Control in the Field	498
	13.11	Compaction Control of Core Materials Containing Gravels	502
		Frequency of Testing	503
	13.13	Specifications and Statistical Control of Density and	
		Moisture Content	504
	13.14	Treatment of Contact Services	506
	PART	II: INSTRUMENTATION	
	13 15	Purpose and Types of Instruments	509
		Piezometers	510
		Installation	516
	13.18	Measurement of Horizontal Embankment Movement	519
		Foundation Settlement	521
		Vertical Embankment Compression	521
		Suface Monuments	526
	13.22	Strain Meters	527
	13.23	Stress Meters	528
	13.24	Earthquake Recorders	529
	13.25	Observation and Measurement of Leakage	529
	13.26	Planning for Instrument Installation	531

			xiii
14.	SOME	IMPORTANT EMBANKMENT DAMS	523
	14.1 14.2 14.3 14.4 14.5 14.6	Chicoasen Dam (Mexico) Oroville Dam (USA) Tehri Dam (India) Nurek Dam (Russia) Mica Dam (Canada) High Aswan Dam (Egypt)	533 536 539 542 545 548
15.	CASE	STUDIES OF DAM FAILURES	552
	15.1 15.2 15.3 15.4 15.5 15.6	Failure of Teton Dam (USA) Failure of Panshet Dam (India) Failure of Nanak Sagar Dam (India) Waco Dam Slide (USA) Drawdown Slope Failure of Sampna Dam (India) Overtopping Failure of Machhu Dam II (India)	552 558 563 566 569 571
16.	RIVER	DIVERSION DURING CONTRUCTION	576
	16.1 16.2 16.3 16.4 16.5 16.6 16.7 16.8	General Diversion Stage Diversion Capacity Diversion Methods Diversion Through or Over Permanent Works River Closure for Diversion Coffer Dams Final Closure of Diversion Works	576 577 579 580 588 591 594 603
17.	SPILL	WAYS FOR EMBANKMENT DAMS	606
	17.1 17.2 17.3 17.4 17.5 17.6 17.7 17.8	General: Factors Affecting Design Components of Spillways Types of Spillways Design Principles of Ogee or Overflow Spillway Side-Channel Spillway Chute Spillway Shaft Spillway Tunnel Spillway	606 607 614 625 625 629 640
	17.9	Use of Hydraulic Models in Design of Spillway and Energ Dissipators	y 652
	17.10	Dam Heightening and Spillways	655
18.	ENER	GY DISSIPATORS	657
	18.1 18.2	General-Energy Dissipators Design Criteria of Various Energy Dissipators	657 660
19.		RONMENTAL IMPACT OF DAMS	683
	APPE	NDIX	696